Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
46153 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ | 0.6121 | 0.787 | 0.7778 | [M:[0.9726, 0.9726, 0.8253], q:[0.7432, 0.2842], qb:[0.4863, 0.4316], phi:[0.5137]] | [M:[[4], [4], [-11]], q:[[1], [-5]], qb:[[2], [10]], phi:[[-2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{3}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}q_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$ | ${2}\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ | 0 | t^2.147 + t^2.312 + t^2.476 + t^2.754 + 2*t^2.918 + t^3.246 + 2*t^3.688 + t^3.853 + t^4.13 + 2*t^4.295 + 2*t^4.459 + 2*t^4.623 + t^4.787 + t^4.901 + t^4.952 + 3*t^5.065 + 3*t^5.229 + 2*t^5.394 + t^5.507 + 2*t^5.671 + t^5.722 + 3*t^5.836 + 2*t^6.164 + t^6.278 + t^6.329 + 3*t^6.442 + t^6.493 + 5*t^6.606 + 2*t^6.771 + t^6.884 + 2*t^6.935 + 3*t^7.048 + 2*t^7.099 + 4*t^7.213 + t^7.263 + 4*t^7.377 + t^7.428 + 3*t^7.541 + t^7.655 + 2*t^7.705 + 4*t^7.819 + 2*t^7.87 + 5*t^7.983 + 2*t^8.147 + t^8.198 + 2*t^8.261 + 4*t^8.425 - 2*t^8.476 + 5*t^8.589 + 2*t^8.64 + 4*t^8.754 + t^8.804 - t^8.918 + t^8.969 - t^4.541/y - t^7.017/y + (2*t^7.623)/y + t^7.787/y + t^7.901/y + (4*t^8.065)/y + (3*t^8.229)/y + (3*t^8.394)/y + t^8.558/y + (2*t^8.671)/y + t^8.722/y + (3*t^8.836)/y - t^4.541*y - t^7.017*y + 2*t^7.623*y + t^7.787*y + t^7.901*y + 4*t^8.065*y + 3*t^8.229*y + 3*t^8.394*y + t^8.558*y + 2*t^8.671*y + t^8.722*y + 3*t^8.836*y | g1^5*t^2.147 + t^2.312/g1^3 + t^2.476/g1^11 + g1^12*t^2.754 + 2*g1^4*t^2.918 + t^3.246/g1^12 + 2*g1^3*t^3.688 + t^3.853/g1^5 + g1^18*t^4.13 + 2*g1^10*t^4.295 + 2*g1^2*t^4.459 + (2*t^4.623)/g1^6 + t^4.787/g1^14 + g1^17*t^4.901 + t^4.952/g1^22 + 3*g1^9*t^5.065 + 3*g1*t^5.229 + (2*t^5.394)/g1^7 + g1^24*t^5.507 + 2*g1^16*t^5.671 + t^5.722/g1^23 + 3*g1^8*t^5.836 + (2*t^6.164)/g1^8 + g1^23*t^6.278 + t^6.329/g1^16 + 3*g1^15*t^6.442 + t^6.493/g1^24 + 5*g1^7*t^6.606 + (2*t^6.771)/g1 + g1^30*t^6.884 + (2*t^6.935)/g1^9 + 3*g1^22*t^7.048 + (2*t^7.099)/g1^17 + 4*g1^14*t^7.213 + t^7.263/g1^25 + 4*g1^6*t^7.377 + t^7.428/g1^33 + (3*t^7.541)/g1^2 + g1^29*t^7.655 + (2*t^7.705)/g1^10 + 4*g1^21*t^7.819 + (2*t^7.87)/g1^18 + 5*g1^13*t^7.983 + 2*g1^5*t^8.147 + t^8.198/g1^34 + 2*g1^36*t^8.261 + 4*g1^28*t^8.425 - (2*t^8.476)/g1^11 + 5*g1^20*t^8.589 + (2*t^8.64)/g1^19 + 4*g1^12*t^8.754 + t^8.804/g1^27 - g1^4*t^8.918 + t^8.969/g1^35 - t^4.541/(g1^2*y) - t^7.017/(g1^13*y) + (2*t^7.623)/(g1^6*y) + t^7.787/(g1^14*y) + (g1^17*t^7.901)/y + (4*g1^9*t^8.065)/y + (3*g1*t^8.229)/y + (3*t^8.394)/(g1^7*y) + t^8.558/(g1^15*y) + (2*g1^16*t^8.671)/y + t^8.722/(g1^23*y) + (3*g1^8*t^8.836)/y - (t^4.541*y)/g1^2 - (t^7.017*y)/g1^13 + (2*t^7.623*y)/g1^6 + (t^7.787*y)/g1^14 + g1^17*t^7.901*y + 4*g1^9*t^8.065*y + 3*g1*t^8.229*y + (3*t^8.394*y)/g1^7 + (t^8.558*y)/g1^15 + 2*g1^16*t^8.671*y + (t^8.722*y)/g1^23 + 3*g1^8*t^8.836*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
45992 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$ | 0.5983 | 0.7653 | 0.7818 | [M:[0.9618, 0.9618], q:[0.7404, 0.2978], qb:[0.4809, 0.4044], phi:[0.5191]] | t^2.107 + t^2.336 + t^2.656 + 2*t^2.885 + t^3.344 + t^3.435 + 2*t^3.664 + t^3.893 + t^3.984 + 2*t^4.213 + 2*t^4.443 + t^4.672 + t^4.763 + 3*t^4.992 + 2*t^5.221 + t^5.312 + 3*t^5.541 + 4*t^5.771 - t^4.557/y - t^4.557*y | detail |