Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46118 SU2adj1nf2 $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_2$ + $ q_1q_2\tilde{q}_1^2$ + $ M_3q_1\tilde{q}_1$ 0.6103 0.7849 0.7775 [X:[], M:[0.9748, 1.0252, 0.7689], q:[0.7437, 0.2816], qb:[0.4874, 0.4369], phi:[0.5126]] [X:[], M:[[4], [-4], [-3]], q:[[1], [-5]], qb:[[2], [10]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$q_2\tilde{q}_2$, $ M_3$, $ q_2\tilde{q}_1$, $ \tilde{q}_1\tilde{q}_2$, $ M_2$, $ \phi_1^2$, $ \phi_1q_2^2$, $ q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ \phi_1\tilde{q}_1^2$, $ M_3q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_3^2$, $ \phi_1q_1q_2$, $ M_3q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ q_2\tilde{q}_1\tilde{q}_2^2$, $ \phi_1q_1\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1^2\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ M_2q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_2M_3$, $ M_3\phi_1^2$, $ M_2q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1q_2^3\tilde{q}_2$, $ M_3\phi_1q_2^2$, $ \phi_1q_2^3\tilde{q}_1$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ q_1q_2\tilde{q}_2^2$, $ M_3q_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2^2\tilde{q}_2^2$ $M_3\phi_1q_2\tilde{q}_2$, $ 2\phi_1q_2^2\tilde{q}_1\tilde{q}_2$ 0 t^2.16 + 2*t^2.31 + t^2.77 + 2*t^3.08 + t^3.23 + t^3.54 + t^3.69 + t^3.84 + t^4.16 + 2*t^4.31 + 3*t^4.46 + 3*t^4.61 + t^4.93 + 2*t^5.08 + 2*t^5.23 + 4*t^5.38 + t^5.53 + t^5.55 + t^5.7 + 3*t^5.85 + 2*t^6.15 + 2*t^6.3 + 2*t^6.31 + t^6.45 + 3*t^6.47 + 4*t^6.62 + 4*t^6.77 + 4*t^6.92 + t^6.93 + 2*t^7.08 + 4*t^7.23 + 4*t^7.39 + 3*t^7.54 + 5*t^7.69 + 2*t^7.7 + t^7.84 + 4*t^7.85 + 2*t^8. + t^8.16 - t^8.31 + 2*t^8.32 + 3*t^8.46 + 3*t^8.47 + 2*t^8.61 + 6*t^8.62 + t^8.76 + 3*t^8.77 + 3*t^8.92 - t^4.54/y - t^6.84/y + (3*t^7.46)/y + t^7.93/y + (2*t^8.08)/y + (3*t^8.23)/y + (5*t^8.38)/y + (2*t^8.53)/y + t^8.7/y + (5*t^8.85)/y - t^4.54*y - t^6.84*y + 3*t^7.46*y + t^7.93*y + 2*t^8.08*y + 3*t^8.23*y + 5*t^8.38*y + 2*t^8.53*y + t^8.7*y + 5*t^8.85*y g1^5*t^2.16 + (2*t^2.31)/g1^3 + g1^12*t^2.77 + (2*t^3.08)/g1^4 + t^3.23/g1^12 + g1^11*t^3.54 + g1^3*t^3.69 + t^3.84/g1^5 + g1^18*t^4.16 + 2*g1^10*t^4.31 + 3*g1^2*t^4.46 + (3*t^4.61)/g1^6 + g1^17*t^4.93 + 2*g1^9*t^5.08 + 2*g1*t^5.23 + (4*t^5.38)/g1^7 + t^5.53/g1^15 + g1^24*t^5.55 + g1^16*t^5.7 + 3*g1^8*t^5.85 + (2*t^6.15)/g1^8 + (2*t^6.3)/g1^16 + 2*g1^23*t^6.31 + t^6.45/g1^24 + 3*g1^15*t^6.47 + 4*g1^7*t^6.62 + (4*t^6.77)/g1 + (4*t^6.92)/g1^9 + g1^30*t^6.93 + 2*g1^22*t^7.08 + 4*g1^14*t^7.23 + 4*g1^6*t^7.39 + (3*t^7.54)/g1^2 + (5*t^7.69)/g1^10 + 2*g1^29*t^7.7 + t^7.84/g1^18 + 4*g1^21*t^7.85 + 2*g1^13*t^8. + g1^5*t^8.16 - t^8.31/g1^3 + 2*g1^36*t^8.32 + (3*t^8.46)/g1^11 + 3*g1^28*t^8.47 + (2*t^8.61)/g1^19 + 6*g1^20*t^8.62 + t^8.76/g1^27 + 3*g1^12*t^8.77 + 3*g1^4*t^8.92 - t^4.54/(g1^2*y) - t^6.84/(g1^5*y) + (3*g1^2*t^7.46)/y + (g1^17*t^7.93)/y + (2*g1^9*t^8.08)/y + (3*g1*t^8.23)/y + (5*t^8.38)/(g1^7*y) + (2*t^8.53)/(g1^15*y) + (g1^16*t^8.7)/y + (5*g1^8*t^8.85)/y - (t^4.54*y)/g1^2 - (t^6.84*y)/g1^5 + 3*g1^2*t^7.46*y + g1^17*t^7.93*y + 2*g1^9*t^8.08*y + 3*g1*t^8.23*y + (5*t^8.38*y)/g1^7 + (2*t^8.53*y)/g1^15 + g1^16*t^8.7*y + 5*g1^8*t^8.85*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46362 $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_2$ + $ q_1q_2\tilde{q}_1^2$ + $ M_3q_1\tilde{q}_1$ + $ M_4\phi_1q_2\tilde{q}_2$ 0.6285 0.8175 0.7689 [X:[], M:[0.9769, 1.0231, 0.7673, 0.7673], q:[0.7442, 0.2789], qb:[0.4884, 0.4422], phi:[0.5116]] t^2.16 + 3*t^2.3 + t^2.79 + 2*t^3.07 + t^3.21 + t^3.56 + t^3.84 + t^4.19 + 2*t^4.33 + 4*t^4.47 + 6*t^4.6 + t^4.96 + 3*t^5.09 + 2*t^5.23 + 6*t^5.37 + 2*t^5.51 + t^5.58 + t^5.72 + 3*t^5.86 - 2*t^6. - t^4.53/y - t^4.53*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46017 SU2adj1nf2 $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_2$ + $ q_1q_2\tilde{q}_1^2$ 0.5921 0.7527 0.7867 [X:[], M:[0.9726, 1.0274], q:[0.7431, 0.2843], qb:[0.4863, 0.4314], phi:[0.5137]] t^2.15 + t^2.31 + t^2.75 + 2*t^3.08 + t^3.25 + t^3.52 + 2*t^3.69 + t^3.85 + t^4.13 + 2*t^4.29 + 2*t^4.46 + t^4.62 + t^4.9 + t^5.06 + 2*t^5.23 + 2*t^5.39 + t^5.51 + t^5.67 + 3*t^5.84 - t^4.54/y - t^4.54*y detail