Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46099 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }\phi_{1}^{4}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{2}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ 0.6567 0.8429 0.7791 [M:[1.1526, 0.6737, 0.6948], q:[0.75, 0.4237], qb:[0.4026, 0.4237], phi:[0.5]] [M:[[-2], [1], [4]], q:[[0], [1]], qb:[[-2], [1]], phi:[[0]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }M_{2}q_{1}q_{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}q_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }q_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ ${}q_{1}q_{2}^{2}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ 0 t^2.021 + t^2.084 + 2*t^2.479 + t^3. + 2*t^3.458 + 2*t^3.521 + t^3.979 + 4*t^4.042 + t^4.106 + t^4.169 + 2*t^4.5 + 2*t^4.563 + 3*t^4.958 + t^5.021 + t^5.084 + 4*t^5.479 + 4*t^5.542 + 2*t^5.606 + 2*t^5.937 + 3*t^6.063 + 4*t^6.127 + t^6.19 + t^6.253 + 2*t^6.458 + 6*t^6.521 + 2*t^6.584 + 2*t^6.648 + 2*t^6.916 + 4*t^6.979 + 6*t^7.042 + t^7.106 + t^7.169 + 2*t^7.437 + 4*t^7.5 + 8*t^7.563 + 4*t^7.627 + 2*t^7.69 + 2*t^7.958 + t^8.021 + 7*t^8.084 + 3*t^8.148 + 4*t^8.211 + t^8.274 + t^8.338 + 2*t^8.416 - 2*t^8.479 + 4*t^8.542 + 6*t^8.606 + 2*t^8.669 + 2*t^8.732 + 3*t^8.937 - t^4.5/y - t^6.521/y - t^6.584/y + t^7.042/y + t^7.106/y + (2*t^7.5)/y + (2*t^7.563)/y + t^8.021/y + t^8.084/y + t^8.416/y + (5*t^8.479)/y + (3*t^8.542)/y + t^8.606/y - t^8.669/y + (4*t^8.937)/y - t^4.5*y - t^6.521*y - t^6.584*y + t^7.042*y + t^7.106*y + 2*t^7.5*y + 2*t^7.563*y + t^8.021*y + t^8.084*y + t^8.416*y + 5*t^8.479*y + 3*t^8.542*y + t^8.606*y - t^8.669*y + 4*t^8.937*y g1*t^2.021 + g1^4*t^2.084 + (2*t^2.479)/g1 + t^3. + (2*t^3.458)/g1^2 + 2*g1*t^3.521 + t^3.979/g1 + 4*g1^2*t^4.042 + g1^5*t^4.106 + g1^8*t^4.169 + 2*t^4.5 + 2*g1^3*t^4.563 + (3*t^4.958)/g1^2 + g1*t^5.021 + g1^4*t^5.084 + (4*t^5.479)/g1 + 4*g1^2*t^5.542 + 2*g1^5*t^5.606 + (2*t^5.937)/g1^3 + 3*g1^3*t^6.063 + 4*g1^6*t^6.127 + g1^9*t^6.19 + g1^12*t^6.253 + (2*t^6.458)/g1^2 + 6*g1*t^6.521 + 2*g1^4*t^6.584 + 2*g1^7*t^6.648 + (2*t^6.916)/g1^4 + (4*t^6.979)/g1 + 6*g1^2*t^7.042 + g1^5*t^7.106 + g1^8*t^7.169 + (2*t^7.437)/g1^3 + 4*t^7.5 + 8*g1^3*t^7.563 + 4*g1^6*t^7.627 + 2*g1^9*t^7.69 + (2*t^7.958)/g1^2 + g1*t^8.021 + 7*g1^4*t^8.084 + 3*g1^7*t^8.148 + 4*g1^10*t^8.211 + g1^13*t^8.274 + g1^16*t^8.338 + (2*t^8.416)/g1^4 - (2*t^8.479)/g1 + 4*g1^2*t^8.542 + 6*g1^5*t^8.606 + 2*g1^8*t^8.669 + 2*g1^11*t^8.732 + (3*t^8.937)/g1^3 - t^4.5/y - (g1*t^6.521)/y - (g1^4*t^6.584)/y + (g1^2*t^7.042)/y + (g1^5*t^7.106)/y + (2*t^7.5)/y + (2*g1^3*t^7.563)/y + (g1*t^8.021)/y + (g1^4*t^8.084)/y + t^8.416/(g1^4*y) + (5*t^8.479)/(g1*y) + (3*g1^2*t^8.542)/y + (g1^5*t^8.606)/y - (g1^8*t^8.669)/y + (4*t^8.937)/(g1^3*y) - t^4.5*y - g1*t^6.521*y - g1^4*t^6.584*y + g1^2*t^7.042*y + g1^5*t^7.106*y + 2*t^7.5*y + 2*g1^3*t^7.563*y + g1*t^8.021*y + g1^4*t^8.084*y + (t^8.416*y)/g1^4 + (5*t^8.479*y)/g1 + 3*g1^2*t^8.542*y + g1^5*t^8.606*y - g1^8*t^8.669*y + (4*t^8.937*y)/g1^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46722 ${}\phi_{1}q_{1}^{2}$ + ${ }\phi_{1}^{4}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{2}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}M_{3}$ 0.525 0.6875 0.7636 [M:[0.9, 0.8, 1.2], q:[0.75, 0.55], qb:[0.15, 0.55], phi:[0.5]] 2*t^2.1 + t^2.4 + 2*t^2.7 + t^3. + 2*t^3.6 + 2*t^3.9 + 3*t^4.2 + 2*t^4.5 + 6*t^4.8 + 4*t^5.1 + 3*t^5.4 + 4*t^5.7 + t^6. - t^4.5/y - t^4.5*y detail {a: 21/40, c: 11/16, M1: 9/10, M2: 4/5, M3: 6/5, q1: 3/4, q2: 11/20, qb1: 3/20, qb2: 11/20, phi1: 1/2}


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46033 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }\phi_{1}^{4}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$ 0.6567 0.843 0.7791 [M:[1.1525, 0.6728, 0.6949], q:[0.75, 0.4246], qb:[0.4025, 0.4228], phi:[0.5]] t^2.019 + t^2.085 + t^2.476 + t^2.481 + t^3. + 2*t^3.458 + t^3.519 + t^3.524 + t^3.976 + 2*t^4.037 + t^4.042 + t^4.048 + t^4.103 + t^4.169 + t^4.495 + t^4.5 + t^4.561 + t^4.566 + t^4.952 + t^4.958 + t^4.963 + t^5.019 + t^5.085 + 3*t^5.476 + t^5.481 + t^5.537 + 3*t^5.542 + t^5.603 + t^5.609 + t^5.934 + t^5.939 + t^5.995 - t^6. - t^4.5/y - t^4.5*y detail