Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46099 SU2adj1nf2 $\phi_1q_1^2$ + $ \phi_1^4$ + $ M_1q_2\tilde{q}_2$ + $ M_2\phi_1q_2\tilde{q}_1$ + $ M_3\phi_1\tilde{q}_1^2$ + $ M_2\phi_1\tilde{q}_1\tilde{q}_2$ 0.6567 0.8429 0.7791 [X:[], M:[1.1526, 0.6737, 0.6948], q:[0.75, 0.4237], qb:[0.4026, 0.4237], phi:[0.5]] [X:[], M:[[-2], [1], [4]], q:[[0], [1]], qb:[[-2], [1]], phi:[[0]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_3$, $ q_2\tilde{q}_1$, $ \tilde{q}_1\tilde{q}_2$, $ \phi_1^2$, $ M_1$, $ q_1\tilde{q}_1$, $ q_1q_2$, $ q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_2^2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_2M_3$, $ M_3^2$, $ M_2q_2\tilde{q}_1$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_3q_2\tilde{q}_1$, $ M_3\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1^2$, $ q_2\tilde{q}_1^2\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_2\phi_1^2$, $ M_3\phi_1^2$, $ M_1M_2$, $ M_2q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ M_1M_3$, $ M_2q_1q_2$, $ M_3q_1\tilde{q}_1$, $ M_2q_1\tilde{q}_2$, $ M_3q_1q_2$, $ M_3q_1\tilde{q}_2$, $ q_1q_2\tilde{q}_1^2$, $ q_1\tilde{q}_1^2\tilde{q}_2$ $q_1q_2^2\tilde{q}_1$, $ q_1q_2\tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_1\tilde{q}_2^2$ 0 t^2.02 + t^2.08 + 2*t^2.48 + t^3. + 2*t^3.46 + 2*t^3.52 + t^3.98 + 4*t^4.04 + t^4.11 + t^4.17 + 2*t^4.5 + 2*t^4.56 + 3*t^4.96 + t^5.02 + t^5.08 + 4*t^5.48 + 4*t^5.54 + 2*t^5.61 + 2*t^5.94 + 3*t^6.06 + 4*t^6.13 + t^6.19 + t^6.25 + 2*t^6.46 + 6*t^6.52 + 2*t^6.58 + 2*t^6.65 + 2*t^6.92 + 4*t^6.98 + 6*t^7.04 + t^7.11 + t^7.17 + 2*t^7.44 + 4*t^7.5 + 8*t^7.56 + 4*t^7.63 + 2*t^7.69 + 2*t^7.96 + t^8.02 + 7*t^8.08 + 3*t^8.15 + 4*t^8.21 + t^8.27 + t^8.34 + 2*t^8.42 - 2*t^8.48 + 4*t^8.54 + 6*t^8.61 + 2*t^8.67 + 2*t^8.73 + 3*t^8.94 - t^4.5/y - t^6.52/y - t^6.58/y + t^7.04/y + t^7.11/y + (2*t^7.5)/y + (2*t^7.56)/y + t^8.02/y + t^8.08/y + t^8.42/y + (5*t^8.48)/y + (3*t^8.54)/y + t^8.61/y - t^8.67/y + (4*t^8.94)/y - t^4.5*y - t^6.52*y - t^6.58*y + t^7.04*y + t^7.11*y + 2*t^7.5*y + 2*t^7.56*y + t^8.02*y + t^8.08*y + t^8.42*y + 5*t^8.48*y + 3*t^8.54*y + t^8.61*y - t^8.67*y + 4*t^8.94*y g1*t^2.02 + g1^4*t^2.08 + (2*t^2.48)/g1 + t^3. + (2*t^3.46)/g1^2 + 2*g1*t^3.52 + t^3.98/g1 + 4*g1^2*t^4.04 + g1^5*t^4.11 + g1^8*t^4.17 + 2*t^4.5 + 2*g1^3*t^4.56 + (3*t^4.96)/g1^2 + g1*t^5.02 + g1^4*t^5.08 + (4*t^5.48)/g1 + 4*g1^2*t^5.54 + 2*g1^5*t^5.61 + (2*t^5.94)/g1^3 + 3*g1^3*t^6.06 + 4*g1^6*t^6.13 + g1^9*t^6.19 + g1^12*t^6.25 + (2*t^6.46)/g1^2 + 6*g1*t^6.52 + 2*g1^4*t^6.58 + 2*g1^7*t^6.65 + (2*t^6.92)/g1^4 + (4*t^6.98)/g1 + 6*g1^2*t^7.04 + g1^5*t^7.11 + g1^8*t^7.17 + (2*t^7.44)/g1^3 + 4*t^7.5 + 8*g1^3*t^7.56 + 4*g1^6*t^7.63 + 2*g1^9*t^7.69 + (2*t^7.96)/g1^2 + g1*t^8.02 + 7*g1^4*t^8.08 + 3*g1^7*t^8.15 + 4*g1^10*t^8.21 + g1^13*t^8.27 + g1^16*t^8.34 + (2*t^8.42)/g1^4 - (2*t^8.48)/g1 + 4*g1^2*t^8.54 + 6*g1^5*t^8.61 + 2*g1^8*t^8.67 + 2*g1^11*t^8.73 + (3*t^8.94)/g1^3 - t^4.5/y - (g1*t^6.52)/y - (g1^4*t^6.58)/y + (g1^2*t^7.04)/y + (g1^5*t^7.11)/y + (2*t^7.5)/y + (2*g1^3*t^7.56)/y + (g1*t^8.02)/y + (g1^4*t^8.08)/y + t^8.42/(g1^4*y) + (5*t^8.48)/(g1*y) + (3*g1^2*t^8.54)/y + (g1^5*t^8.61)/y - (g1^8*t^8.67)/y + (4*t^8.94)/(g1^3*y) - t^4.5*y - g1*t^6.52*y - g1^4*t^6.58*y + g1^2*t^7.04*y + g1^5*t^7.11*y + 2*t^7.5*y + 2*g1^3*t^7.56*y + g1*t^8.02*y + g1^4*t^8.08*y + (t^8.42*y)/g1^4 + (5*t^8.48*y)/g1 + 3*g1^2*t^8.54*y + g1^5*t^8.61*y - g1^8*t^8.67*y + (4*t^8.94*y)/g1^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46722 $\phi_1q_1^2$ + $ \phi_1^4$ + $ M_1q_2\tilde{q}_2$ + $ M_2\phi_1q_2\tilde{q}_1$ + $ M_3\phi_1\tilde{q}_1^2$ + $ M_2\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_2M_3$ 0.525 0.6875 0.7636 [X:[], M:[0.9, 0.8, 1.2], q:[0.75, 0.55], qb:[0.15, 0.55], phi:[0.5]] 2*t^2.1 + t^2.4 + 2*t^2.7 + t^3. + 2*t^3.6 + 2*t^3.9 + 3*t^4.2 + 2*t^4.5 + 6*t^4.8 + 4*t^5.1 + 3*t^5.4 + 4*t^5.7 + t^6. - t^4.5/y - t^4.5*y detail {a: 21/40, c: 11/16, M1: 9/10, M2: 4/5, M3: 6/5, q1: 3/4, q2: 11/20, qb1: 3/20, qb2: 11/20, phi1: 1/2}


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46033 SU2adj1nf2 $\phi_1q_1^2$ + $ \phi_1^4$ + $ M_1q_2\tilde{q}_2$ + $ M_2\phi_1q_2\tilde{q}_1$ + $ M_3\phi_1\tilde{q}_1^2$ 0.6567 0.843 0.7791 [X:[], M:[1.1525, 0.6728, 0.6949], q:[0.75, 0.4246], qb:[0.4025, 0.4228], phi:[0.5]] t^2.02 + t^2.08 + 2*t^2.48 + t^3. + 2*t^3.46 + 2*t^3.52 + t^3.98 + 3*t^4.04 + t^4.05 + t^4.1 + t^4.17 + t^4.49 + t^4.5 + t^4.56 + t^4.57 + t^4.95 + 2*t^4.96 + t^5.02 + t^5.08 + 4*t^5.48 + 4*t^5.54 + t^5.6 + t^5.61 + t^5.93 + t^5.94 + t^5.99 - t^6. - t^4.5/y - t^4.5*y detail