Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46079 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$ 0.5868 0.7598 0.7723 [M:[0.9236, 0.7707, 1.2293], q:[0.7309, 0.3455], qb:[0.3455, 0.4252], phi:[0.5382]] [M:[[4], [12], [-12]], q:[[1], [-5]], qb:[[-5], [17]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{3}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}^{3}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$ ${}M_{2}M_{3}$, ${ }M_{2}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$ 3 t^2.073 + 2*t^2.312 + t^2.771 + 2*t^3.229 + t^3.468 + 3*t^3.688 + 2*t^3.927 + t^4.146 + t^4.166 + 2*t^4.385 + 3*t^4.624 + t^4.844 + 2*t^5.083 + 2*t^5.302 + 5*t^5.541 + t^5.761 + 2*t^5.78 + 3*t^6. + t^6.22 + 3*t^6.239 + 3*t^6.459 + 2*t^6.478 + 4*t^6.698 + 4*t^6.917 + 5*t^6.937 + 3*t^7.156 + 5*t^7.376 + 5*t^7.395 + 3*t^7.615 + t^7.634 + t^7.834 + 8*t^7.854 - t^8.073 + 5*t^8.093 + t^8.293 + 2*t^8.312 + t^8.332 + t^8.532 + 4*t^8.551 + t^8.771 + 3*t^8.79 + t^8.99 - t^4.615/y + (2*t^7.385)/y + t^7.624/y + t^7.844/y + (2*t^8.083)/y + (2*t^8.302)/y + (5*t^8.541)/y + (3*t^8.761)/y + (2*t^8.78)/y - t^4.615*y + 2*t^7.385*y + t^7.624*y + t^7.844*y + 2*t^8.083*y + 2*t^8.302*y + 5*t^8.541*y + 3*t^8.761*y + 2*t^8.78*y t^2.073/g1^10 + 2*g1^12*t^2.312 + g1^4*t^2.771 + (2*t^3.229)/g1^4 + g1^18*t^3.468 + (3*t^3.688)/g1^12 + 2*g1^10*t^3.927 + t^4.146/g1^20 + g1^32*t^4.166 + 2*g1^2*t^4.385 + 3*g1^24*t^4.624 + t^4.844/g1^6 + 2*g1^16*t^5.083 + (2*t^5.302)/g1^14 + 5*g1^8*t^5.541 + t^5.761/g1^22 + 2*g1^30*t^5.78 + 3*t^6. + t^6.22/g1^30 + 3*g1^22*t^6.239 + (3*t^6.459)/g1^8 + 2*g1^44*t^6.478 + 4*g1^14*t^6.698 + (4*t^6.917)/g1^16 + 5*g1^36*t^6.937 + 3*g1^6*t^7.156 + (5*t^7.376)/g1^24 + 5*g1^28*t^7.395 + (3*t^7.615)/g1^2 + g1^50*t^7.634 + t^7.834/g1^32 + 8*g1^20*t^7.854 - t^8.073/g1^10 + 5*g1^42*t^8.093 + t^8.293/g1^40 + 2*g1^12*t^8.312 + g1^64*t^8.332 + t^8.532/g1^18 + 4*g1^34*t^8.551 + g1^4*t^8.771 + 3*g1^56*t^8.79 + t^8.99/g1^26 - t^4.615/(g1^2*y) + (2*g1^2*t^7.385)/y + (g1^24*t^7.624)/y + t^7.844/(g1^6*y) + (2*g1^16*t^8.083)/y + (2*t^8.302)/(g1^14*y) + (5*g1^8*t^8.541)/y + (3*t^8.761)/(g1^22*y) + (2*g1^30*t^8.78)/y - (t^4.615*y)/g1^2 + 2*g1^2*t^7.385*y + g1^24*t^7.624*y + (t^7.844*y)/g1^6 + 2*g1^16*t^8.083*y + (2*t^8.302*y)/g1^14 + 5*g1^8*t^8.541*y + (3*t^8.761*y)/g1^22 + 2*g1^30*t^8.78*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45966 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ 0.6081 0.7817 0.778 [M:[0.9777, 0.7349, 1.0669], q:[0.7444, 0.2779], qb:[0.4761, 0.457], phi:[0.5112]] 2*t^2.205 + t^2.262 + t^2.933 + t^3.067 + 2*t^3.201 + t^3.604 + t^3.662 + t^3.738 + t^4.275 + t^4.333 + t^4.39 + 3*t^4.409 + 2*t^4.467 + t^4.524 + 2*t^5.138 + t^5.195 + 2*t^5.272 + t^5.329 + 3*t^5.405 + t^5.463 + 2*t^5.809 + 3*t^5.866 + t^5.923 + t^5.943 - 2*t^6. - t^4.533/y - t^4.533*y detail