Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46076 SU2adj1nf2 $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ \phi_1^4$ + $ M_2\phi_1\tilde{q}_1^2$ + $ M_3\phi_1\tilde{q}_2^2$ 0.6855 0.8928 0.7678 [X:[], M:[0.8171, 0.6829, 0.6829], q:[0.75, 0.4329], qb:[0.4085, 0.4085], phi:[0.5]] [X:[], M:[[1, 1], [-2, 0], [0, -2]], q:[[0, 0], [-1, -1]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_3$, $ M_1$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ q_2\tilde{q}_1$, $ \phi_1^2$, $ q_1\tilde{q}_1$, $ q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ M_2^2$, $ M_3^2$, $ M_2M_3$, $ \phi_1q_2^2$, $ M_1M_3$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_1M_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ M_3q_2\tilde{q}_1$, $ M_3q_2\tilde{q}_2$, $ M_2q_2\tilde{q}_1$, $ M_1^2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ \phi_1q_1\tilde{q}_1$, $ q_2\tilde{q}_1^2\tilde{q}_2$, $ \phi_1q_1\tilde{q}_2$, $ q_2\tilde{q}_1\tilde{q}_2^2$, $ M_2\phi_1^2$, $ q_2^2\tilde{q}_2^2$, $ M_3\phi_1^2$, $ q_2^2\tilde{q}_1^2$, $ \phi_1q_1q_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_1\phi_1^2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ M_2q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_2$, $ M_3q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ M_3q_1\tilde{q}_2$, $ M_2q_1\tilde{q}_2$, $ q_1\tilde{q}_1^2\tilde{q}_2$, $ q_1\tilde{q}_1\tilde{q}_2^2$ $q_1q_2\tilde{q}_1^2$, $ q_1q_2\tilde{q}_1\tilde{q}_2$, $ q_1q_2\tilde{q}_2^2$ 1 2*t^2.05 + 2*t^2.45 + 2*t^2.52 + t^3. + 2*t^3.48 + t^3.95 + 2*t^4.02 + 4*t^4.1 + 4*t^4.5 + 4*t^4.57 + 3*t^4.9 + 4*t^4.98 + 5*t^5.05 + 2*t^5.45 + 6*t^5.52 + 2*t^5.93 + t^6. + 2*t^6.07 + 6*t^6.15 + 2*t^6.4 + 4*t^6.48 + 10*t^6.55 + 8*t^6.62 + 6*t^6.95 + 6*t^7.02 + 9*t^7.1 + 4*t^7.35 + 4*t^7.43 + 6*t^7.5 + 12*t^7.57 + 3*t^7.9 + 6*t^7.98 + 4*t^8.05 + 4*t^8.12 + 9*t^8.2 + 2*t^8.38 - 2*t^8.45 + 12*t^8.6 + 12*t^8.67 + 3*t^8.85 + 4*t^8.93 - t^4.5/y - (2*t^6.55)/y - t^6.95/y + t^7.1/y + (4*t^7.5)/y + (4*t^7.57)/y + t^7.9/y + (4*t^7.98)/y + (4*t^8.05)/y + (4*t^8.45)/y + (6*t^8.52)/y - (3*t^8.6)/y + (4*t^8.93)/y - t^4.5*y - 2*t^6.55*y - t^6.95*y + t^7.1*y + 4*t^7.5*y + 4*t^7.57*y + t^7.9*y + 4*t^7.98*y + 4*t^8.05*y + 4*t^8.45*y + 6*t^8.52*y - 3*t^8.6*y + 4*t^8.93*y t^2.05/g1^2 + t^2.05/g2^2 + 2*g1*g2*t^2.45 + t^2.52/g1 + t^2.52/g2 + t^3. + g1*t^3.48 + g2*t^3.48 + g1*g2*t^3.95 + t^4.02/g1 + t^4.02/g2 + t^4.1/g1^4 + t^4.1/g2^4 + (2*t^4.1)/(g1^2*g2^2) + (2*g1*t^4.5)/g2 + (2*g2*t^4.5)/g1 + t^4.57/g1^3 + t^4.57/g2^3 + t^4.57/(g1*g2^2) + t^4.57/(g1^2*g2) + 3*g1^2*g2^2*t^4.9 + 2*g1*t^4.98 + 2*g2*t^4.98 + (2*t^5.05)/g1^2 + (2*t^5.05)/g2^2 + t^5.05/(g1*g2) + 2*g1*g2*t^5.45 + (2*t^5.52)/g1 + (g1*t^5.52)/g2^2 + (2*t^5.52)/g2 + (g2*t^5.52)/g1^2 + g1^2*g2*t^5.93 + g1*g2^2*t^5.93 - t^6. + (g1*t^6.)/g2 + (g2*t^6.)/g1 + t^6.07/g1^3 + t^6.07/g2^3 + t^6.15/g1^6 + t^6.15/g2^6 + (2*t^6.15)/(g1^2*g2^4) + (2*t^6.15)/(g1^4*g2^2) + 2*g1^2*g2^2*t^6.4 + 2*g1*t^6.48 + 2*g2*t^6.48 + t^6.55/g1^2 + (2*g1*t^6.55)/g2^3 + t^6.55/g2^2 + (4*t^6.55)/(g1*g2) + (2*g2*t^6.55)/g1^3 + t^6.62/g1^5 + t^6.62/g2^5 + t^6.62/(g1*g2^4) + (2*t^6.62)/(g1^2*g2^3) + (2*t^6.62)/(g1^3*g2^2) + t^6.62/(g1^4*g2) + 3*g1^2*t^6.95 + 3*g2^2*t^6.95 + t^7.02/g1 + (2*g1*t^7.02)/g2^2 + t^7.02/g2 + (2*g2*t^7.02)/g1^2 + (2*t^7.1)/g1^4 + (2*t^7.1)/g2^4 + t^7.1/(g1*g2^3) + (3*t^7.1)/(g1^2*g2^2) + t^7.1/(g1^3*g2) + 4*g1^3*g2^3*t^7.35 + 2*g1^2*g2*t^7.43 + 2*g1*g2^2*t^7.43 + (3*g1*t^7.5)/g2 + (3*g2*t^7.5)/g1 + (3*t^7.57)/g1^3 + (g1*t^7.57)/g2^4 + (3*t^7.57)/g2^3 + (2*t^7.57)/(g1*g2^2) + (2*t^7.57)/(g1^2*g2) + (g2*t^7.57)/g1^4 + 3*g1^2*g2^2*t^7.9 + 2*g1*t^7.98 + (g1^2*t^7.98)/g2 + 2*g2*t^7.98 + (g2^2*t^7.98)/g1 + (g1*t^8.05)/g2^3 + (2*t^8.05)/(g1*g2) + (g2*t^8.05)/g1^3 + t^8.12/g1^5 + t^8.12/g2^5 + t^8.12/(g1^2*g2^3) + t^8.12/(g1^3*g2^2) + t^8.2/g1^8 + t^8.2/g2^8 + (2*t^8.2)/(g1^2*g2^6) + (3*t^8.2)/(g1^4*g2^4) + (2*t^8.2)/(g1^6*g2^2) + g1^3*g2^2*t^8.38 + g1^2*g2^3*t^8.38 + g1^2*t^8.45 - 4*g1*g2*t^8.45 + g2^2*t^8.45 - (2*t^8.52)/g1 + (2*g1*t^8.52)/g2^2 - (2*t^8.52)/g2 + (2*g2*t^8.52)/g1^2 + t^8.6/g1^4 + (2*g1*t^8.6)/g2^5 + t^8.6/g2^4 + (3*t^8.6)/(g1*g2^3) + (3*t^8.6)/(g1^3*g2) + (2*g2*t^8.6)/g1^5 + t^8.67/g1^7 + t^8.67/g2^7 + t^8.67/(g1*g2^6) + (2*t^8.67)/(g1^2*g2^5) + (2*t^8.67)/(g1^3*g2^4) + (2*t^8.67)/(g1^4*g2^3) + (2*t^8.67)/(g1^5*g2^2) + t^8.67/(g1^6*g2) + 3*g1^3*g2^3*t^8.85 + 2*g1^2*g2*t^8.93 + 2*g1*g2^2*t^8.93 - t^4.5/y - t^6.55/(g1^2*y) - t^6.55/(g2^2*y) - (g1*g2*t^6.95)/y + t^7.1/(g1^2*g2^2*y) + (2*g1*t^7.5)/(g2*y) + (2*g2*t^7.5)/(g1*y) + t^7.57/(g1^3*y) + t^7.57/(g2^3*y) + t^7.57/(g1*g2^2*y) + t^7.57/(g1^2*g2*y) + (g1^2*g2^2*t^7.9)/y + (2*g1*t^7.98)/y + (2*g2*t^7.98)/y + t^8.05/(g1^2*y) + t^8.05/(g2^2*y) + (2*t^8.05)/(g1*g2*y) + (g1^2*t^8.45)/y + (2*g1*g2*t^8.45)/y + (g2^2*t^8.45)/y + (2*t^8.52)/(g1*y) + (g1*t^8.52)/(g2^2*y) + (2*t^8.52)/(g2*y) + (g2*t^8.52)/(g1^2*y) - t^8.6/(g1^4*y) - t^8.6/(g2^4*y) - t^8.6/(g1^2*g2^2*y) + (2*g1^2*g2*t^8.93)/y + (2*g1*g2^2*t^8.93)/y - t^4.5*y - (t^6.55*y)/g1^2 - (t^6.55*y)/g2^2 - g1*g2*t^6.95*y + (t^7.1*y)/(g1^2*g2^2) + (2*g1*t^7.5*y)/g2 + (2*g2*t^7.5*y)/g1 + (t^7.57*y)/g1^3 + (t^7.57*y)/g2^3 + (t^7.57*y)/(g1*g2^2) + (t^7.57*y)/(g1^2*g2) + g1^2*g2^2*t^7.9*y + 2*g1*t^7.98*y + 2*g2*t^7.98*y + (t^8.05*y)/g1^2 + (t^8.05*y)/g2^2 + (2*t^8.05*y)/(g1*g2) + g1^2*t^8.45*y + 2*g1*g2*t^8.45*y + g2^2*t^8.45*y + (2*t^8.52*y)/g1 + (g1*t^8.52*y)/g2^2 + (2*t^8.52*y)/g2 + (g2*t^8.52*y)/g1^2 - (t^8.6*y)/g1^4 - (t^8.6*y)/g2^4 - (t^8.6*y)/(g1^2*g2^2) + 2*g1^2*g2*t^8.93*y + 2*g1*g2^2*t^8.93*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46188 $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ \phi_1^4$ + $ M_2\phi_1\tilde{q}_1^2$ + $ M_3\phi_1\tilde{q}_2^2$ + $ M_4q_2\tilde{q}_1$ 0.6722 0.8699 0.7727 [X:[], M:[0.8081, 0.6733, 0.7105, 1.1447], q:[0.75, 0.4419], qb:[0.4133, 0.3947], phi:[0.5]] t^2.02 + t^2.13 + 2*t^2.42 + t^2.51 + t^3. + 2*t^3.43 + t^3.49 + t^3.92 + t^4.01 + t^4.04 + t^4.07 + 2*t^4.15 + t^4.26 + 2*t^4.44 + t^4.53 + 2*t^4.56 + t^4.64 + 3*t^4.85 + 2*t^4.93 + 2*t^5.02 + t^5.13 + 2*t^5.42 + 2*t^5.45 + 2*t^5.51 + 2*t^5.57 + t^5.62 + 3*t^5.86 + t^5.91 + 2*t^5.94 - 2*t^6. - t^4.5/y - t^4.5*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45913 SU2adj1nf2 $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ \phi_1^4$ + $ M_2\phi_1\tilde{q}_1^2$ 0.6648 0.8527 0.7796 [X:[], M:[0.8137, 0.6793], q:[0.75, 0.4363], qb:[0.4103, 0.4034], phi:[0.5]] t^2.04 + 2*t^2.44 + t^2.52 + t^2.54 + t^3. + t^3.46 + t^3.48 + t^3.92 + t^3.94 + t^4.02 + t^4.04 + t^4.08 + t^4.12 + 2*t^4.48 + t^4.56 + t^4.58 + 3*t^4.88 + 2*t^4.96 + 2*t^4.98 + 2*t^5.04 + t^5.06 + t^5.08 + 2*t^5.44 + t^5.5 + 2*t^5.52 + t^5.54 + t^5.9 + t^5.92 + t^5.96 + t^5.98 - t^6. - t^4.5/y - t^4.5*y detail