Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46063 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_2\tilde{q}_1$ + $ M_3\phi_1q_1^2$ + $ M_3^2$ 0.5986 0.7318 0.8179 [X:[], M:[0.8772, 0.8772, 1.0], q:[0.3114, 0.8114], qb:[0.8114, 0.5569], phi:[0.3772]] [X:[], M:[[1, -3], [-1, -1], [0, 0]], q:[[0, 1], [-1, 2]], qb:[[1, 0], [0, 5]], phi:[[0, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$\phi_1^2$, $ q_1\tilde{q}_2$, $ M_1$, $ M_2$, $ M_3$, $ \phi_1q_1\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1^4$, $ q_2\tilde{q}_1$, $ \phi_1^2q_1\tilde{q}_2$, $ M_1\phi_1^2$, $ M_2\phi_1^2$, $ q_1^2\tilde{q}_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ M_1^2$, $ M_1M_2$, $ M_3\phi_1^2$, $ M_2^2$, $ M_3q_1\tilde{q}_2$ $\phi_1q_2^2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1^3q_1\tilde{q}_2$ -1 t^2.26 + t^2.6 + 2*t^2.63 + t^3. + t^3.74 + 2*t^4.1 + t^4.47 + t^4.53 + 2*t^4.87 + 2*t^4.9 + t^5.21 + 2*t^5.24 + 3*t^5.26 + t^5.6 - t^6. + t^6.34 + 2*t^6.37 - t^6.4 + 2*t^6.71 + 4*t^6.74 - 2*t^6.76 + t^6.79 + t^7.08 + 2*t^7.1 + 2*t^7.16 + t^7.47 + 2*t^7.5 + 3*t^7.53 + t^7.81 + 2*t^7.84 + 2*t^7.87 + 2*t^7.9 + 4*t^8.21 - 2*t^8.24 - 2*t^8.26 + 2*t^8.58 - 2*t^8.6 - 4*t^8.63 + 2*t^8.95 + 2*t^8.97 - t^4.13/y - t^6.4/y - (2*t^6.76)/y + (2*t^7.5)/y + (2*t^7.87)/y + (2*t^7.9)/y + (2*t^8.24)/y + (2*t^8.26)/y + t^8.6/y + (2*t^8.63)/y - t^8.66/y - t^4.13*y - t^6.4*y - 2*t^6.76*y + 2*t^7.5*y + 2*t^7.87*y + 2*t^7.9*y + 2*t^8.24*y + 2*t^8.26*y + t^8.6*y + 2*t^8.63*y - t^8.66*y t^2.26/g2^4 + g2^6*t^2.6 + (g1*t^2.63)/g2^3 + t^2.63/(g1*g2) + t^3. + g2^4*t^3.74 + g1*g2^5*t^4.1 + (g2^7*t^4.1)/g1 + g2^8*t^4.47 + t^4.53/g2^8 + 2*g2^2*t^4.87 + (g1*t^4.9)/g2^7 + t^4.9/(g1*g2^5) + g2^12*t^5.21 + g1*g2^3*t^5.24 + (g2^5*t^5.24)/g1 + (g1^2*t^5.26)/g2^6 + t^5.26/g2^4 + t^5.26/(g1^2*g2^2) + g2^6*t^5.6 - t^6. + g2^10*t^6.34 + g1*g2*t^6.37 + (g2^3*t^6.37)/g1 - t^6.4/g2^6 + g1*g2^11*t^6.71 + (g2^13*t^6.71)/g1 + g1^2*g2^2*t^6.74 + 2*g2^4*t^6.74 + (g2^6*t^6.74)/g1^2 - (g1*t^6.76)/g2^5 - t^6.76/(g1*g2^3) + t^6.79/g2^12 + g2^14*t^7.08 + g1*g2^5*t^7.1 + (g2^7*t^7.1)/g1 + (g1*t^7.16)/g2^11 + t^7.16/(g1*g2^9) + g2^8*t^7.47 + (g1*t^7.5)/g2 + (g2*t^7.5)/g1 + (g1^2*t^7.53)/g2^10 + t^7.53/g2^8 + t^7.53/(g1^2*g2^6) + g2^18*t^7.81 + g1*g2^9*t^7.84 + (g2^11*t^7.84)/g1 + g1^2*t^7.87 + (g2^4*t^7.87)/g1^2 + (g1^3*t^7.9)/g2^9 + t^7.9/(g1^3*g2^3) + g1^2*g2^10*t^8.21 + 2*g2^12*t^8.21 + (g2^14*t^8.21)/g1^2 - g1*g2^3*t^8.24 - (g2^5*t^8.24)/g1 - (2*t^8.26)/g2^4 + g1*g2^13*t^8.58 + (g2^15*t^8.58)/g1 - 2*g2^6*t^8.6 - (2*g1*t^8.63)/g2^3 - (2*t^8.63)/(g1*g2) + 2*g2^16*t^8.95 + g1*g2^7*t^8.97 + (g2^9*t^8.97)/g1 - t^4.13/(g2^2*y) - t^6.4/(g2^6*y) - (g1*t^6.76)/(g2^5*y) - t^6.76/(g1*g2^3*y) + (g1*t^7.5)/(g2*y) + (g2*t^7.5)/(g1*y) + (2*g2^2*t^7.87)/y + (g1*t^7.9)/(g2^7*y) + t^7.9/(g1*g2^5*y) + (g1*g2^3*t^8.24)/y + (g2^5*t^8.24)/(g1*y) + (2*t^8.26)/(g2^4*y) + (g2^6*t^8.6)/y + (g1*t^8.63)/(g2^3*y) + t^8.63/(g1*g2*y) - t^8.66/(g2^10*y) - (t^4.13*y)/g2^2 - (t^6.4*y)/g2^6 - (g1*t^6.76*y)/g2^5 - (t^6.76*y)/(g1*g2^3) + (g1*t^7.5*y)/g2 + (g2*t^7.5*y)/g1 + 2*g2^2*t^7.87*y + (g1*t^7.9*y)/g2^7 + (t^7.9*y)/(g1*g2^5) + g1*g2^3*t^8.24*y + (g2^5*t^8.24*y)/g1 + (2*t^8.26*y)/g2^4 + g2^6*t^8.6*y + (g1*t^8.63*y)/g2^3 + (t^8.63*y)/(g1*g2) - (t^8.66*y)/g2^10


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46220 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_2\tilde{q}_1$ + $ M_3\phi_1q_1^2$ + $ M_3^2$ + $ M_3q_1\tilde{q}_2$ + $ \phi_1^2X_1$ 0.5651 0.6693 0.8444 [X:[1.3333], M:[0.8333, 0.8333, 1.0], q:[0.3333, 0.8333], qb:[0.8333, 0.6667], phi:[0.3333]] 2*t^2.5 + 2*t^3. + 2*t^4. + 2*t^4.5 + 4*t^5. + 2*t^5.5 - t^6. - t^4./y - t^4.*y detail {a: 217/384, c: 257/384, X1: 4/3, M1: 5/6, M2: 5/6, M3: 1, q1: 1/3, q2: 5/6, qb1: 5/6, qb2: 2/3, phi1: 1/3}
46096 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_2\tilde{q}_1$ + $ M_3\phi_1q_1^2$ + $ M_3^2$ + $ M_4\phi_1^2$ 0.5801 0.7001 0.8285 [X:[], M:[0.8842, 0.8842, 1.0, 1.2317], q:[0.3079, 0.8079], qb:[0.8079, 0.5396], phi:[0.3842]] t^2.54 + 2*t^2.65 + t^3. + 2*t^3.69 + 2*t^4.04 + t^4.39 + t^4.85 + t^5.08 + 2*t^5.19 + 2*t^5.31 + t^5.54 - 2*t^6. - t^4.15/y - t^4.15*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45886 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_2\tilde{q}_1$ + $ M_3\phi_1q_1^2$ 0.6693 0.8377 0.7989 [X:[], M:[0.6919, 0.6919, 0.6801], q:[0.4841, 0.8241], qb:[0.8241, 0.4605], phi:[0.3518]] t^2.04 + 2*t^2.08 + t^2.11 + t^2.83 + t^3.82 + 2*t^3.85 + t^3.89 + t^4.08 + 2*t^4.12 + 4*t^4.15 + 2*t^4.19 + t^4.22 + t^4.87 + 2*t^4.91 + 2*t^4.94 + t^5.67 + t^5.86 + 4*t^5.89 + 5*t^5.93 + 2*t^5.96 - 2*t^6. - t^4.06/y - t^4.06*y detail