Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
46057 | SU2adj1nf2 | $\phi_1q_1^2$ + $ \phi_1^4$ + $ M_1q_2\tilde{q}_2$ + $ M_2\phi_1q_2\tilde{q}_1$ + $ M_3\phi_1\tilde{q}_1\tilde{q}_2$ | 0.6571 | 0.8446 | 0.778 | [X:[], M:[1.1432, 0.6784, 0.6784], q:[0.75, 0.4284], qb:[0.3932, 0.4284], phi:[0.5]] | [X:[], M:[[1, 0], [0, 1], [-1, -1]], q:[[0, 0], [-1, -1]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_3$, $ M_2$, $ q_2\tilde{q}_1$, $ \tilde{q}_1\tilde{q}_2$, $ \phi_1^2$, $ M_1$, $ q_1\tilde{q}_1$, $ q_1q_2$, $ q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ M_2M_3$, $ \phi_1q_2\tilde{q}_2$, $ M_3^2$, $ \phi_1q_2^2$, $ M_2^2$, $ \phi_1\tilde{q}_2^2$, $ M_2q_2\tilde{q}_1$, $ M_3q_2\tilde{q}_1$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_3q_2\tilde{q}_1$, $ M_2\tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1^2\tilde{q}_2$, $ q_2^2\tilde{q}_1^2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_3\phi_1^2$, $ M_2\phi_1^2$, $ M_1M_3$, $ M_3q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ M_1M_2$, $ M_2q_1\tilde{q}_1$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ M_2q_1q_2$, $ M_3q_1\tilde{q}_2$, $ M_3q_1q_2$, $ M_2q_1\tilde{q}_2$, $ M_3\phi_1\tilde{q}_1^2$, $ q_1q_2\tilde{q}_1^2$, $ M_2\phi_1\tilde{q}_1^2$, $ q_1\tilde{q}_1^2\tilde{q}_2$ | $q_1q_2^2\tilde{q}_1$, $ q_1q_2\tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_1\tilde{q}_2^2$ | -1 | 2*t^2.04 + 2*t^2.46 + t^3. + 2*t^3.43 + 2*t^3.54 + t^3.86 + 6*t^4.07 + 4*t^4.5 + 3*t^4.93 + 2*t^5.04 + 6*t^5.46 + 4*t^5.57 + 4*t^5.89 - t^6. + 8*t^6.11 + 2*t^6.32 + 10*t^6.54 + 3*t^6.86 + 6*t^6.96 + 5*t^7.07 + 2*t^7.29 + 2*t^7.39 + 8*t^7.5 + 8*t^7.61 + t^7.72 + 9*t^7.93 - 6*t^8.04 + 15*t^8.14 + 6*t^8.36 - 4*t^8.46 + 12*t^8.57 + 3*t^8.79 + 4*t^8.89 - t^4.5/y - (2*t^6.54)/y + (2*t^7.07)/y + (4*t^7.5)/y + (2*t^8.04)/y + (8*t^8.46)/y + t^8.57/y + (6*t^8.89)/y - t^4.5*y - 2*t^6.54*y + 2*t^7.07*y + 4*t^7.5*y + 2*t^8.04*y + 8*t^8.46*y + t^8.57*y + 6*t^8.89*y | t^2.04/(g1*g2) + g2*t^2.04 + t^2.46/g2 + g1*g2*t^2.46 + t^3. + 2*g1*t^3.43 + t^3.54/(g1*g2) + g2*t^3.54 + g1^2*t^3.86 + (2*t^4.07)/g1 + (2*t^4.07)/(g1^2*g2^2) + 2*g2^2*t^4.07 + 2*t^4.5 + t^4.5/(g1*g2^2) + g1*g2^2*t^4.5 + g1*t^4.93 + t^4.93/g2^2 + g1^2*g2^2*t^4.93 + t^5.04/(g1*g2) + g2*t^5.04 + (3*t^5.46)/g2 + 3*g1*g2*t^5.46 + (2*t^5.57)/g1 + t^5.57/(g1^2*g2^2) + g2^2*t^5.57 + (2*g1*t^5.89)/g2 + 2*g1^2*g2*t^5.89 - t^6. + (2*t^6.11)/(g1^3*g2^3) + (2*t^6.11)/(g1^2*g2) + (2*g2*t^6.11)/g1 + 2*g2^3*t^6.11 + (g1^2*t^6.32)/g2 + g1^3*g2*t^6.32 + (2*t^6.54)/(g1^2*g2^3) + (3*t^6.54)/(g1*g2) + 3*g2*t^6.54 + 2*g1*g2^3*t^6.54 + 3*g1^2*t^6.86 + t^6.96/(g1*g2^3) + (2*t^6.96)/g2 + 2*g1*g2*t^6.96 + g1^2*g2^3*t^6.96 + t^7.07/g1 + (2*t^7.07)/(g1^2*g2^2) + 2*g2^2*t^7.07 + 2*g1^3*t^7.29 + t^7.39/g2^3 + g1^3*g2^3*t^7.39 + 2*t^7.5 + (3*t^7.5)/(g1*g2^2) + 3*g1*g2^2*t^7.5 + (2*t^7.61)/(g1^3*g2^3) + (2*t^7.61)/(g1^2*g2) + (2*g2*t^7.61)/g1 + 2*g2^3*t^7.61 + g1^4*t^7.72 + 3*g1*t^7.93 + (3*t^7.93)/g2^2 + 3*g1^2*g2^2*t^7.93 - (3*t^8.04)/(g1*g2) - 3*g2*t^8.04 + (3*t^8.14)/g1^2 + (3*t^8.14)/(g1^4*g2^4) + (3*t^8.14)/(g1^3*g2^2) + (3*g2^2*t^8.14)/g1 + 3*g2^4*t^8.14 + 2*g1^2*t^8.36 + (2*g1*t^8.36)/g2^2 + 2*g1^3*g2^2*t^8.36 - (2*t^8.46)/g2 - 2*g1*g2*t^8.46 + (2*t^8.57)/g1 + (2*t^8.57)/(g1^3*g2^4) + (3*t^8.57)/(g1^2*g2^2) + 3*g2^2*t^8.57 + 2*g1*g2^4*t^8.57 + g1^3*t^8.79 + (g1^2*t^8.79)/g2^2 + g1^4*g2^2*t^8.79 + (2*g1*t^8.89)/g2 + 2*g1^2*g2*t^8.89 - t^4.5/y - t^6.54/(g1*g2*y) - (g2*t^6.54)/y + (2*t^7.07)/(g1*y) + (2*t^7.5)/y + t^7.5/(g1*g2^2*y) + (g1*g2^2*t^7.5)/y + t^8.04/(g1*g2*y) + (g2*t^8.04)/y + (4*t^8.46)/(g2*y) + (4*g1*g2*t^8.46)/y + t^8.57/(g1*y) + (3*g1*t^8.89)/(g2*y) + (3*g1^2*g2*t^8.89)/y - t^4.5*y - (t^6.54*y)/(g1*g2) - g2*t^6.54*y + (2*t^7.07*y)/g1 + 2*t^7.5*y + (t^7.5*y)/(g1*g2^2) + g1*g2^2*t^7.5*y + (t^8.04*y)/(g1*g2) + g2*t^8.04*y + (4*t^8.46*y)/g2 + 4*g1*g2*t^8.46*y + (t^8.57*y)/g1 + (3*g1*t^8.89*y)/g2 + 3*g1^2*g2*t^8.89*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
45938 | SU2adj1nf2 | $\phi_1q_1^2$ + $ \phi_1^4$ + $ M_1q_2\tilde{q}_2$ + $ M_2\phi_1q_2\tilde{q}_1$ | 0.6363 | 0.8038 | 0.7916 | [X:[], M:[1.142, 0.6775], q:[0.75, 0.4306], qb:[0.392, 0.4275], phi:[0.5]] | t^2.03 + t^2.46 + t^2.47 + t^3. + 2*t^3.43 + t^3.53 + t^3.54 + t^3.85 + t^3.96 + 2*t^4.06 + t^4.07 + t^4.08 + t^4.49 + t^4.5 + t^4.92 + t^4.93 + t^4.94 + t^5.03 + 3*t^5.46 + t^5.47 + t^5.56 + t^5.57 + 2*t^5.88 + t^5.89 + t^5.99 - t^6. - t^4.5/y - t^4.5*y | detail |