Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
46014 | SU2adj1nf2 | ${}M_{1}\phi_{1}^{2}$ + ${ }M_{2}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ | 0.7202 | 0.897 | 0.803 | [X:[], M:[1.1723, 0.6898, 0.6898, 0.6898], q:[0.7931, 0.5172], qb:[0.5172, 0.5172], phi:[0.4139]] | [X:[], M:[[4, 4, 4], [-8, -1, -1], [-1, -8, -1], [-1, -1, -8]], q:[[1, 1, 1], [7, 0, 0]], qb:[[0, 7, 0], [0, 0, 7]], phi:[[-2, -2, -2]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{4}$, ${ }M_{3}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{4}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{2}M_{4}$, ${ }M_{3}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{4}$, ${ }M_{1}M_{3}$, ${ }M_{1}M_{2}$ | ${}$ | -9 | 3*t^2.07 + 3*t^3.1 + t^3.52 + 6*t^4.14 + 6*t^4.34 + 9*t^5.17 + 3*t^5.59 - 9*t^6. + 16*t^6.21 + 15*t^6.41 + 3*t^6.62 - 3*t^6.83 + 10*t^7.24 + 15*t^7.45 + 6*t^7.66 - 27*t^8.07 + 25*t^8.28 + 27*t^8.48 + 21*t^8.69 - 3*t^8.9 - t^4.24/y - (3*t^6.31)/y + (3*t^7.14)/y + (12*t^8.17)/y - (6*t^8.38)/y + (3*t^8.59)/y - t^4.24*y - 3*t^6.31*y + 3*t^7.14*y + 12*t^8.17*y - 6*t^8.38*y + 3*t^8.59*y | t^2.07/(g1*g2*g3^8) + t^2.07/(g1*g2^8*g3) + t^2.07/(g1^8*g2*g3) + g1^7*g2^7*t^3.1 + g1^7*g3^7*t^3.1 + g2^7*g3^7*t^3.1 + g1^4*g2^4*g3^4*t^3.52 + t^4.14/(g1^2*g2^2*g3^16) + t^4.14/(g1^2*g2^9*g3^9) + t^4.14/(g1^9*g2^2*g3^9) + t^4.14/(g1^2*g2^16*g3^2) + t^4.14/(g1^9*g2^9*g3^2) + t^4.14/(g1^16*g2^2*g3^2) + (g1^12*t^4.34)/(g2^2*g3^2) + (g1^5*g2^5*t^4.34)/g3^2 + (g2^12*t^4.34)/(g1^2*g3^2) + (g1^5*g3^5*t^4.34)/g2^2 + (g2^5*g3^5*t^4.34)/g1^2 + (g3^12*t^4.34)/(g1^2*g2^2) + (g1^6*g2^6*t^5.17)/g3^8 + (2*g1^6*t^5.17)/(g2*g3) + (2*g2^6*t^5.17)/(g1*g3) + (g1^6*g3^6*t^5.17)/g2^8 + (2*g3^6*t^5.17)/(g1*g2) + (g2^6*g3^6*t^5.17)/g1^8 + (g1^3*g2^3*t^5.59)/g3^4 + (g1^3*g3^3*t^5.59)/g2^4 + (g2^3*g3^3*t^5.59)/g1^4 - 3*t^6. - (g1^7*t^6.)/g2^7 - (g2^7*t^6.)/g1^7 - (g1^7*t^6.)/g3^7 - (g2^7*t^6.)/g3^7 - (g3^7*t^6.)/g1^7 - (g3^7*t^6.)/g2^7 + g1^14*g2^14*t^6.21 + t^6.21/(g1^3*g2^3*g3^24) + t^6.21/(g1^3*g2^10*g3^17) + t^6.21/(g1^10*g2^3*g3^17) + t^6.21/(g1^3*g2^17*g3^10) + t^6.21/(g1^10*g2^10*g3^10) + t^6.21/(g1^17*g2^3*g3^10) + t^6.21/(g1^3*g2^24*g3^3) + t^6.21/(g1^10*g2^17*g3^3) + t^6.21/(g1^17*g2^10*g3^3) + t^6.21/(g1^24*g2^3*g3^3) + g1^14*g2^7*g3^7*t^6.21 + g1^7*g2^14*g3^7*t^6.21 + g1^14*g3^14*t^6.21 + g1^7*g2^7*g3^14*t^6.21 + g2^14*g3^14*t^6.21 + (g1^11*t^6.41)/(g2^3*g3^10) + (g1^4*g2^4*t^6.41)/g3^10 + (g2^11*t^6.41)/(g1^3*g3^10) + (g1^11*t^6.41)/(g2^10*g3^3) + (2*g1^4*t^6.41)/(g2^3*g3^3) + (2*g2^4*t^6.41)/(g1^3*g3^3) + (g2^11*t^6.41)/(g1^10*g3^3) + (g1^4*g3^4*t^6.41)/g2^10 + (2*g3^4*t^6.41)/(g1^3*g2^3) + (g2^4*g3^4*t^6.41)/g1^10 + (g3^11*t^6.41)/(g1^3*g2^10) + (g3^11*t^6.41)/(g1^10*g2^3) + g1^11*g2^11*g3^4*t^6.62 + g1^11*g2^4*g3^11*t^6.62 + g1^4*g2^11*g3^11*t^6.62 - (g1*g2*t^6.83)/g3^6 - (g1*g3*t^6.83)/g2^6 - (g2*g3*t^6.83)/g1^6 + (g1^5*g2^5*t^7.24)/g3^16 + (g1^5*t^7.24)/(g2^2*g3^9) + (g2^5*t^7.24)/(g1^2*g3^9) + (g1^5*t^7.24)/(g2^9*g3^2) + t^7.24/(g1^2*g2^2*g3^2) + (g2^5*t^7.24)/(g1^9*g3^2) + (g1^5*g3^5*t^7.24)/g2^16 + (g3^5*t^7.24)/(g1^2*g2^9) + (g3^5*t^7.24)/(g1^9*g2^2) + (g2^5*g3^5*t^7.24)/g1^16 + (g1^19*g2^5*t^7.45)/g3^2 + (g1^12*g2^12*t^7.45)/g3^2 + (g1^5*g2^19*t^7.45)/g3^2 + (g1^19*g3^5*t^7.45)/g2^2 + 2*g1^12*g2^5*g3^5*t^7.45 + 2*g1^5*g2^12*g3^5*t^7.45 + (g2^19*g3^5*t^7.45)/g1^2 + (g1^12*g3^12*t^7.45)/g2^2 + 2*g1^5*g2^5*g3^12*t^7.45 + (g2^12*g3^12*t^7.45)/g1^2 + (g1^5*g3^19*t^7.45)/g2^2 + (g2^5*g3^19*t^7.45)/g1^2 + (g1^2*g2^2*t^7.66)/g3^12 + (g1^2*t^7.66)/(g2^5*g3^5) + (g2^2*t^7.66)/(g1^5*g3^5) + (g1^2*g3^2*t^7.66)/g2^12 + (g3^2*t^7.66)/(g1^5*g2^5) + (g2^2*g3^2*t^7.66)/g1^12 - (g1^6*t^8.07)/(g2*g3^15) - (g2^6*t^8.07)/(g1*g3^15) - (2*g1^6*t^8.07)/(g2^8*g3^8) - (5*t^8.07)/(g1*g2*g3^8) - (2*g2^6*t^8.07)/(g1^8*g3^8) - (g1^6*t^8.07)/(g2^15*g3) - (5*t^8.07)/(g1*g2^8*g3) - (5*t^8.07)/(g1^8*g2*g3) - (g2^6*t^8.07)/(g1^15*g3) - (g3^6*t^8.07)/(g1*g2^15) - (2*g3^6*t^8.07)/(g1^8*g2^8) - (g3^6*t^8.07)/(g1^15*g2) + t^8.28/(g1^4*g2^4*g3^32) + t^8.28/(g1^4*g2^11*g3^25) + t^8.28/(g1^11*g2^4*g3^25) + t^8.28/(g1^4*g2^18*g3^18) + t^8.28/(g1^11*g2^11*g3^18) + t^8.28/(g1^18*g2^4*g3^18) + t^8.28/(g1^4*g2^25*g3^11) + t^8.28/(g1^11*g2^18*g3^11) + t^8.28/(g1^18*g2^11*g3^11) + t^8.28/(g1^25*g2^4*g3^11) + (g1^13*g2^13*t^8.28)/g3^8 + t^8.28/(g1^4*g2^32*g3^4) + t^8.28/(g1^11*g2^25*g3^4) + t^8.28/(g1^18*g2^18*g3^4) + t^8.28/(g1^25*g2^11*g3^4) + t^8.28/(g1^32*g2^4*g3^4) + (g1^13*g2^6*t^8.28)/g3 + (g1^6*g2^13*t^8.28)/g3 + (g1^13*g3^6*t^8.28)/g2 + g1^6*g2^6*g3^6*t^8.28 + (g2^13*g3^6*t^8.28)/g1 + (g1^13*g3^13*t^8.28)/g2^8 + (g1^6*g3^13*t^8.28)/g2 + (g2^6*g3^13*t^8.28)/g1 + (g2^13*g3^13*t^8.28)/g1^8 + (g1^10*t^8.48)/(g2^4*g3^18) + (g1^3*g2^3*t^8.48)/g3^18 + (g2^10*t^8.48)/(g1^4*g3^18) + (g1^10*t^8.48)/(g2^11*g3^11) + (2*g1^3*t^8.48)/(g2^4*g3^11) + (2*g2^3*t^8.48)/(g1^4*g3^11) + (g2^10*t^8.48)/(g1^11*g3^11) + (g1^10*t^8.48)/(g2^18*g3^4) + (2*g1^3*t^8.48)/(g2^11*g3^4) + (3*t^8.48)/(g1^4*g2^4*g3^4) + (2*g2^3*t^8.48)/(g1^11*g3^4) + (g2^10*t^8.48)/(g1^18*g3^4) + (g1^3*g3^3*t^8.48)/g2^18 + (2*g3^3*t^8.48)/(g1^4*g2^11) + (2*g3^3*t^8.48)/(g1^11*g2^4) + (g2^3*g3^3*t^8.48)/g1^18 + (g3^10*t^8.48)/(g1^4*g2^18) + (g3^10*t^8.48)/(g1^11*g2^11) + (g3^10*t^8.48)/(g1^18*g2^4) + (g1^24*t^8.69)/(g2^4*g3^4) + (g1^17*g2^3*t^8.69)/g3^4 + (2*g1^10*g2^10*t^8.69)/g3^4 + (g1^3*g2^17*t^8.69)/g3^4 + (g2^24*t^8.69)/(g1^4*g3^4) + (g1^17*g3^3*t^8.69)/g2^4 + 2*g1^10*g2^3*g3^3*t^8.69 + 2*g1^3*g2^10*g3^3*t^8.69 + (g2^17*g3^3*t^8.69)/g1^4 + (2*g1^10*g3^10*t^8.69)/g2^4 + 2*g1^3*g2^3*g3^10*t^8.69 + (2*g2^10*g3^10*t^8.69)/g1^4 + (g1^3*g3^17*t^8.69)/g2^4 + (g2^3*g3^17*t^8.69)/g1^4 + (g3^24*t^8.69)/(g1^4*g2^4) - t^8.9/(g1^7*g2^7) - t^8.9/(g1^7*g3^7) - t^8.9/(g2^7*g3^7) - t^4.24/(g1^2*g2^2*g3^2*y) - t^6.31/(g1^3*g2^3*g3^10*y) - t^6.31/(g1^3*g2^10*g3^3*y) - t^6.31/(g1^10*g2^3*g3^3*y) + t^7.14/(g1^2*g2^9*g3^9*y) + t^7.14/(g1^9*g2^2*g3^9*y) + t^7.14/(g1^9*g2^9*g3^2*y) + (g1^6*g2^6*t^8.17)/(g3^8*y) + (3*g1^6*t^8.17)/(g2*g3*y) + (3*g2^6*t^8.17)/(g1*g3*y) + (g1^6*g3^6*t^8.17)/(g2^8*y) + (3*g3^6*t^8.17)/(g1*g2*y) + (g2^6*g3^6*t^8.17)/(g1^8*y) - t^8.38/(g1^4*g2^4*g3^18*y) - t^8.38/(g1^4*g2^11*g3^11*y) - t^8.38/(g1^11*g2^4*g3^11*y) - t^8.38/(g1^4*g2^18*g3^4*y) - t^8.38/(g1^11*g2^11*g3^4*y) - t^8.38/(g1^18*g2^4*g3^4*y) + (g1^3*g2^3*t^8.59)/(g3^4*y) + (g1^3*g3^3*t^8.59)/(g2^4*y) + (g2^3*g3^3*t^8.59)/(g1^4*y) - (t^4.24*y)/(g1^2*g2^2*g3^2) - (t^6.31*y)/(g1^3*g2^3*g3^10) - (t^6.31*y)/(g1^3*g2^10*g3^3) - (t^6.31*y)/(g1^10*g2^3*g3^3) + (t^7.14*y)/(g1^2*g2^9*g3^9) + (t^7.14*y)/(g1^9*g2^2*g3^9) + (t^7.14*y)/(g1^9*g2^9*g3^2) + (g1^6*g2^6*t^8.17*y)/g3^8 + (3*g1^6*t^8.17*y)/(g2*g3) + (3*g2^6*t^8.17*y)/(g1*g3) + (g1^6*g3^6*t^8.17*y)/g2^8 + (3*g3^6*t^8.17*y)/(g1*g2) + (g2^6*g3^6*t^8.17*y)/g1^8 - (t^8.38*y)/(g1^4*g2^4*g3^18) - (t^8.38*y)/(g1^4*g2^11*g3^11) - (t^8.38*y)/(g1^11*g2^4*g3^11) - (t^8.38*y)/(g1^4*g2^18*g3^4) - (t^8.38*y)/(g1^11*g2^11*g3^4) - (t^8.38*y)/(g1^18*g2^4*g3^4) + (g1^3*g2^3*t^8.59*y)/g3^4 + (g1^3*g3^3*t^8.59*y)/g2^4 + (g2^3*g3^3*t^8.59*y)/g1^4 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
45877 | SU2adj1nf2 | ${}M_{1}\phi_{1}^{2}$ + ${ }M_{2}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ | 0.6996 | 0.8578 | 0.8156 | [X:[], M:[1.1679, 0.6908, 0.6908], q:[0.792, 0.5172], qb:[0.5172, 0.5093], phi:[0.4161]] | 2*t^2.07 + 2*t^3.08 + t^3.1 + t^3.5 + t^3.9 + 3*t^4.14 + t^4.3 + 2*t^4.33 + 3*t^4.35 + 4*t^5.15 + 2*t^5.18 + 2*t^5.58 - 5*t^6. - t^4.25/y - t^4.25*y | detail |