Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
45990 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1\tilde{q}_2$ + $ M_2\phi_1q_2^2$ + $ M_3\phi_1^2$ | 0.6283 | 0.7599 | 0.8268 | [X:[], M:[0.6894, 0.7014, 1.2867], q:[0.8396, 0.471], qb:[0.459, 0.8037], phi:[0.3567]] | [X:[], M:[[-8, 8], [-7, 5], [6, -2]], q:[[3, -5], [5, -3]], qb:[[4, 0], [0, 4]], phi:[[-3, 1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ M_2$, $ q_2\tilde{q}_1$, $ \tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ q_2\tilde{q}_2$, $ M_3$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_2^2$, $ M_1^2$, $ M_1M_2$, $ M_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_2q_2\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ q_1\tilde{q}_2$, $ q_2^2\tilde{q}_1^2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_1\phi_1\tilde{q}_1^2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_1M_3$, $ M_2\phi_1\tilde{q}_1^2$, $ M_2q_2\tilde{q}_2$, $ M_2M_3$, $ M_2\phi_1q_2\tilde{q}_1$ | . | -2 | t^2.07 + t^2.1 + t^2.79 + t^3.79 + 2*t^3.82 + 2*t^3.86 + t^3.9 + t^4.14 + t^4.17 + t^4.21 + t^4.86 + t^4.89 + t^4.93 + t^5.58 + t^5.86 + 3*t^5.89 + 3*t^5.93 + t^5.96 - 2*t^6. - 2*t^6.04 - t^6.07 + t^6.2 + t^6.24 + t^6.28 + t^6.31 + t^6.58 + 2*t^6.61 + 2*t^6.65 + t^6.69 + t^6.93 + t^6.96 + t^7. - t^7.03 - 2*t^7.07 - 2*t^7.11 - t^7.14 + t^7.58 + 2*t^7.61 + 5*t^7.65 + 4*t^7.68 + 3*t^7.72 + t^7.92 + 3*t^7.96 + 4*t^8. + 2*t^8.03 - 2*t^8.07 - 4*t^8.1 - 2*t^8.14 - t^8.18 + t^8.27 + t^8.31 + t^8.34 + t^8.37 + t^8.38 + t^8.42 + t^8.65 + 3*t^8.68 + 3*t^8.72 + t^8.75 - 2*t^8.79 - 3*t^8.83 - 2*t^8.86 + t^8.99 - t^4.07/y - t^6.14/y - t^6.17/y + t^7.17/y + t^7.86/y + t^7.89/y + t^7.97/y + t^8./y - t^8.21/y - t^8.24/y - t^8.28/y + t^8.86/y + (3*t^8.89)/y + (4*t^8.93)/y + (3*t^8.96)/y - t^4.07*y - t^6.14*y - t^6.17*y + t^7.17*y + t^7.86*y + t^7.89*y + t^7.97*y + t^8.*y - t^8.21*y - t^8.24*y - t^8.28*y + t^8.86*y + 3*t^8.89*y + 4*t^8.93*y + 3*t^8.96*y | (g2^8*t^2.07)/g1^8 + (g2^5*t^2.1)/g1^7 + (g1^9*t^2.79)/g2^3 + g1^4*g2^4*t^3.79 + 2*g1^5*g2*t^3.82 + (2*g1^6*t^3.86)/g2^2 + (g1^7*t^3.9)/g2^5 + (g2^16*t^4.14)/g1^16 + (g2^13*t^4.17)/g1^15 + (g2^10*t^4.21)/g1^14 + g1*g2^5*t^4.86 + g1^2*g2^2*t^4.89 + (g1^3*t^4.93)/g2 + (g1^18*t^5.58)/g2^6 + (g2^12*t^5.86)/g1^4 + (3*g2^9*t^5.89)/g1^3 + (3*g2^6*t^5.93)/g1^2 + (g2^3*t^5.96)/g1 - 2*t^6. - (2*g1*t^6.04)/g2^3 - (g1^2*t^6.07)/g2^6 + (g2^24*t^6.2)/g1^24 + (g2^21*t^6.24)/g1^23 + (g2^18*t^6.28)/g1^22 + (g2^15*t^6.31)/g1^21 + g1^13*g2*t^6.58 + (2*g1^14*t^6.61)/g2^2 + (2*g1^15*t^6.65)/g2^5 + (g1^16*t^6.69)/g2^8 + (g2^13*t^6.93)/g1^7 + (g2^10*t^6.96)/g1^6 + (g2^7*t^7.)/g1^5 - (g2^4*t^7.03)/g1^4 - (2*g2*t^7.07)/g1^3 - (2*t^7.11)/(g1^2*g2^2) - t^7.14/(g1*g2^5) + g1^8*g2^8*t^7.58 + 2*g1^9*g2^5*t^7.61 + 5*g1^10*g2^2*t^7.65 + (4*g1^11*t^7.68)/g2 + (3*g1^12*t^7.72)/g2^4 + (g2^20*t^7.92)/g1^12 + (3*g2^17*t^7.96)/g1^11 + (4*g2^14*t^8.)/g1^10 + (2*g2^11*t^8.03)/g1^9 - (2*g2^8*t^8.07)/g1^8 - (4*g2^5*t^8.1)/g1^7 - (2*g2^2*t^8.14)/g1^6 - t^8.18/(g1^5*g2) + (g2^32*t^8.27)/g1^32 + (g2^29*t^8.31)/g1^31 + (g2^26*t^8.34)/g1^30 + (g1^27*t^8.37)/g2^9 + (g2^23*t^8.38)/g1^29 + (g2^20*t^8.42)/g1^28 + g1^5*g2^9*t^8.65 + 3*g1^6*g2^6*t^8.68 + 3*g1^7*g2^3*t^8.72 + g1^8*t^8.75 - (2*g1^9*t^8.79)/g2^3 - (3*g1^10*t^8.83)/g2^6 - (2*g1^11*t^8.86)/g2^9 + (g2^21*t^8.99)/g1^15 - (g2*t^4.07)/(g1^3*y) - (g2^9*t^6.14)/(g1^11*y) - (g2^6*t^6.17)/(g1^10*y) + (g2^13*t^7.17)/(g1^15*y) + (g1*g2^5*t^7.86)/y + (g1^2*g2^2*t^7.89)/y + (g1^4*t^7.97)/(g2^4*y) + (g1^5*t^8.)/(g2^7*y) - (g2^17*t^8.21)/(g1^19*y) - (g2^14*t^8.24)/(g1^18*y) - (g2^11*t^8.28)/(g1^17*y) + (g2^12*t^8.86)/(g1^4*y) + (3*g2^9*t^8.89)/(g1^3*y) + (4*g2^6*t^8.93)/(g1^2*y) + (3*g2^3*t^8.96)/(g1*y) - (g2*t^4.07*y)/g1^3 - (g2^9*t^6.14*y)/g1^11 - (g2^6*t^6.17*y)/g1^10 + (g2^13*t^7.17*y)/g1^15 + g1*g2^5*t^7.86*y + g1^2*g2^2*t^7.89*y + (g1^4*t^7.97*y)/g2^4 + (g1^5*t^8.*y)/g2^7 - (g2^17*t^8.21*y)/g1^19 - (g2^14*t^8.24*y)/g1^18 - (g2^11*t^8.28*y)/g1^17 + (g2^12*t^8.86*y)/g1^4 + (3*g2^9*t^8.89*y)/g1^3 + (4*g2^6*t^8.93*y)/g1^2 + (3*g2^3*t^8.96*y)/g1 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
45884 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1\tilde{q}_2$ + $ M_2\phi_1q_2^2$ | 0.6486 | 0.7977 | 0.8132 | [X:[], M:[0.6859, 0.6962], q:[0.8388, 0.4753], qb:[0.4649, 0.8079], phi:[0.3533]] | t^2.06 + t^2.09 + t^2.12 + t^2.82 + t^3.82 + 2*t^3.85 + t^3.88 + t^3.91 + t^4.12 + t^4.15 + 2*t^4.18 + t^4.21 + t^4.24 + t^4.88 + t^4.91 + 2*t^4.94 + t^5.64 + t^5.88 + 3*t^5.91 + 3*t^5.94 + 2*t^5.97 - t^6. - t^4.06/y - t^4.06*y | detail |