Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
45940 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}q_{1}^{2}$ | 0.669 | 0.8353 | 0.8009 | [M:[0.6889, 0.7048, 0.6942], q:[0.4781, 0.8331], qb:[0.8172, 0.4728], phi:[0.3497]] | [M:[[8, -8], [-1, -5], [5, -7]], q:[[-3, 5], [-5, 3]], qb:[[4, 0], [0, 4]], phi:[[1, -3]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{4}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{2}$ | ${}\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$ | 0 | t^2.067 + t^2.082 + t^2.098 + t^2.114 + t^2.852 + t^3.87 + t^3.886 + t^3.902 + t^3.918 + t^4.133 + t^4.149 + 2*t^4.165 + 2*t^4.181 + 2*t^4.197 + t^4.213 + t^4.229 + t^4.919 + t^4.935 + 2*t^4.951 + t^4.967 + t^5.705 + t^5.936 + 2*t^5.952 + 2*t^5.968 + 2*t^5.984 + t^6.2 + t^6.216 + 2*t^6.232 + 3*t^6.247 + 3*t^6.263 + 3*t^6.279 + 3*t^6.295 + 2*t^6.311 + t^6.327 + t^6.343 + t^6.722 + t^6.738 + t^6.754 + t^6.77 + t^6.986 + t^7.001 + 2*t^7.017 + t^7.033 + t^7.049 + t^7.74 + t^7.756 + 2*t^7.771 + t^7.787 + t^7.803 + t^8.003 + 2*t^8.019 + 3*t^8.035 + 3*t^8.051 + t^8.067 - t^8.082 - t^8.098 - 2*t^8.114 - t^8.13 + t^8.266 + t^8.282 + 2*t^8.298 + 3*t^8.314 + 4*t^8.33 + 4*t^8.346 + 5*t^8.362 + 4*t^8.378 + 4*t^8.393 + 3*t^8.409 + 2*t^8.425 + t^8.441 + t^8.457 + t^8.557 + t^8.789 + 2*t^8.805 + 2*t^8.821 + t^8.837 - t^8.852 - t^8.868 - t^8.884 - t^4.049/y - t^6.116/y - t^6.132/y - t^6.148/y - t^6.163/y + t^7.149/y + t^7.165/y + (2*t^7.181)/y + t^7.197/y + t^7.213/y + t^7.919/y + (2*t^7.935)/y + (2*t^7.951)/y + (2*t^7.967)/y + t^7.983/y - t^8.182/y - t^8.198/y - (2*t^8.214)/y - (2*t^8.23)/y - (2*t^8.246)/y - t^8.262/y - t^8.278/y + t^8.936/y + (2*t^8.952)/y + (3*t^8.968)/y + (4*t^8.984)/y - t^4.049*y - t^6.116*y - t^6.132*y - t^6.148*y - t^6.163*y + t^7.149*y + t^7.165*y + 2*t^7.181*y + t^7.197*y + t^7.213*y + t^7.919*y + 2*t^7.935*y + 2*t^7.951*y + 2*t^7.967*y + t^7.983*y - t^8.182*y - t^8.198*y - 2*t^8.214*y - 2*t^8.23*y - 2*t^8.246*y - t^8.262*y - t^8.278*y + t^8.936*y + 2*t^8.952*y + 3*t^8.968*y + 4*t^8.984*y | (g1^8*t^2.067)/g2^8 + (g1^5*t^2.082)/g2^7 + (g1^2*t^2.098)/g2^6 + t^2.114/(g1*g2^5) + (g2^9*t^2.852)/g1^3 + g1^4*g2^4*t^3.87 + g1*g2^5*t^3.886 + (g2^6*t^3.902)/g1^2 + (g2^7*t^3.918)/g1^5 + (g1^16*t^4.133)/g2^16 + (g1^13*t^4.149)/g2^15 + (2*g1^10*t^4.165)/g2^14 + (2*g1^7*t^4.181)/g2^13 + (2*g1^4*t^4.197)/g2^12 + (g1*t^4.213)/g2^11 + t^4.229/(g1^2*g2^10) + g1^5*g2*t^4.919 + g1^2*g2^2*t^4.935 + (2*g2^3*t^4.951)/g1 + (g2^4*t^4.967)/g1^4 + (g2^18*t^5.705)/g1^6 + (g1^12*t^5.936)/g2^4 + (2*g1^9*t^5.952)/g2^3 + (2*g1^6*t^5.968)/g2^2 + (2*g1^3*t^5.984)/g2 + (g1^24*t^6.2)/g2^24 + (g1^21*t^6.216)/g2^23 + (2*g1^18*t^6.232)/g2^22 + (3*g1^15*t^6.247)/g2^21 + (3*g1^12*t^6.263)/g2^20 + (3*g1^9*t^6.279)/g2^19 + (3*g1^6*t^6.295)/g2^18 + (2*g1^3*t^6.311)/g2^17 + t^6.327/g2^16 + t^6.343/(g1^3*g2^15) + g1*g2^13*t^6.722 + (g2^14*t^6.738)/g1^2 + (g2^15*t^6.754)/g1^5 + (g2^16*t^6.77)/g1^8 + (g1^13*t^6.986)/g2^7 + (g1^10*t^7.001)/g2^6 + (2*g1^7*t^7.017)/g2^5 + (g1^4*t^7.033)/g2^4 + (g1*t^7.049)/g2^3 + g1^8*g2^8*t^7.74 + g1^5*g2^9*t^7.756 + 2*g1^2*g2^10*t^7.771 + (g2^11*t^7.787)/g1 + (g2^12*t^7.803)/g1^4 + (g1^20*t^8.003)/g2^12 + (2*g1^17*t^8.019)/g2^11 + (3*g1^14*t^8.035)/g2^10 + (3*g1^11*t^8.051)/g2^9 + (g1^8*t^8.067)/g2^8 - (g1^5*t^8.082)/g2^7 - (g1^2*t^8.098)/g2^6 - (2*t^8.114)/(g1*g2^5) - t^8.13/(g1^4*g2^4) + (g1^32*t^8.266)/g2^32 + (g1^29*t^8.282)/g2^31 + (2*g1^26*t^8.298)/g2^30 + (3*g1^23*t^8.314)/g2^29 + (4*g1^20*t^8.33)/g2^28 + (4*g1^17*t^8.346)/g2^27 + (5*g1^14*t^8.362)/g2^26 + (4*g1^11*t^8.378)/g2^25 + (4*g1^8*t^8.393)/g2^24 + (3*g1^5*t^8.409)/g2^23 + (2*g1^2*t^8.425)/g2^22 + t^8.441/(g1*g2^21) + t^8.457/(g1^4*g2^20) + (g2^27*t^8.557)/g1^9 + g1^9*g2^5*t^8.789 + 2*g1^6*g2^6*t^8.805 + 2*g1^3*g2^7*t^8.821 + g2^8*t^8.837 - (g2^9*t^8.852)/g1^3 - (g2^10*t^8.868)/g1^6 - (g2^11*t^8.884)/g1^9 - (g1*t^4.049)/(g2^3*y) - (g1^9*t^6.116)/(g2^11*y) - (g1^6*t^6.132)/(g2^10*y) - (g1^3*t^6.148)/(g2^9*y) - t^6.163/(g2^8*y) + (g1^13*t^7.149)/(g2^15*y) + (g1^10*t^7.165)/(g2^14*y) + (2*g1^7*t^7.181)/(g2^13*y) + (g1^4*t^7.197)/(g2^12*y) + (g1*t^7.213)/(g2^11*y) + (g1^5*g2*t^7.919)/y + (2*g1^2*g2^2*t^7.935)/y + (2*g2^3*t^7.951)/(g1*y) + (2*g2^4*t^7.967)/(g1^4*y) + (g2^5*t^7.983)/(g1^7*y) - (g1^17*t^8.182)/(g2^19*y) - (g1^14*t^8.198)/(g2^18*y) - (2*g1^11*t^8.214)/(g2^17*y) - (2*g1^8*t^8.23)/(g2^16*y) - (2*g1^5*t^8.246)/(g2^15*y) - (g1^2*t^8.262)/(g2^14*y) - t^8.278/(g1*g2^13*y) + (g1^12*t^8.936)/(g2^4*y) + (2*g1^9*t^8.952)/(g2^3*y) + (3*g1^6*t^8.968)/(g2^2*y) + (4*g1^3*t^8.984)/(g2*y) - (g1*t^4.049*y)/g2^3 - (g1^9*t^6.116*y)/g2^11 - (g1^6*t^6.132*y)/g2^10 - (g1^3*t^6.148*y)/g2^9 - (t^6.163*y)/g2^8 + (g1^13*t^7.149*y)/g2^15 + (g1^10*t^7.165*y)/g2^14 + (2*g1^7*t^7.181*y)/g2^13 + (g1^4*t^7.197*y)/g2^12 + (g1*t^7.213*y)/g2^11 + g1^5*g2*t^7.919*y + 2*g1^2*g2^2*t^7.935*y + (2*g2^3*t^7.951*y)/g1 + (2*g2^4*t^7.967*y)/g1^4 + (g2^5*t^7.983*y)/g1^7 - (g1^17*t^8.182*y)/g2^19 - (g1^14*t^8.198*y)/g2^18 - (2*g1^11*t^8.214*y)/g2^17 - (2*g1^8*t^8.23*y)/g2^16 - (2*g1^5*t^8.246*y)/g2^15 - (g1^2*t^8.262*y)/g2^14 - (t^8.278*y)/(g1*g2^13) + (g1^12*t^8.936*y)/g2^4 + (2*g1^9*t^8.952*y)/g2^3 + (3*g1^6*t^8.968*y)/g2^2 + (4*g1^3*t^8.984*y)/g2 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
45927 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ | 0.6484 | 0.7955 | 0.815 | [M:[0.6966, 0.7061], q:[0.4744, 0.829], qb:[0.8195, 0.4712], phi:[0.3515]] | t^2.09 + t^2.109 + t^2.118 + t^2.837 + t^3.872 + t^3.882 + t^3.891 + 2*t^3.901 + t^4.18 + t^4.199 + t^4.208 + t^4.218 + t^4.227 + t^4.237 + t^4.927 + 2*t^4.946 + t^4.955 + t^5.673 + t^5.962 + t^5.971 + t^5.981 + 2*t^5.99 - t^6. - t^4.054/y - t^4.054*y | detail |