Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
45940 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_2\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ + $ M_3\phi_1q_1^2$ 0.669 0.8353 0.8009 [X:[], M:[0.6889, 0.7048, 0.6942], q:[0.4781, 0.8331], qb:[0.8172, 0.4728], phi:[0.3497]] [X:[], M:[[8, -8], [-1, -5], [5, -7]], q:[[-3, 5], [-5, 3]], qb:[[4, 0], [0, 4]], phi:[[1, -3]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_3$, $ \phi_1^2$, $ M_2$, $ q_1\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ M_1^2$, $ M_1M_3$, $ M_3^2$, $ M_1\phi_1^2$, $ M_1M_2$, $ M_3\phi_1^2$, $ M_2M_3$, $ \phi_1^4$, $ M_2\phi_1^2$, $ M_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ M_3q_1\tilde{q}_2$, $ q_2\tilde{q}_1$, $ \phi_1^2q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ q_1^2\tilde{q}_2^2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_1\phi_1\tilde{q}_2^2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ M_3\phi_1\tilde{q}_2^2$, $ M_3\phi_1q_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ \phi_1^3\tilde{q}_2^2$ $\phi_1^3q_1\tilde{q}_2$, $ M_3q_2\tilde{q}_2$ 0 t^2.07 + t^2.08 + t^2.1 + t^2.11 + t^2.85 + t^3.87 + t^3.89 + t^3.9 + t^3.92 + t^4.13 + t^4.15 + 2*t^4.16 + 2*t^4.18 + 2*t^4.2 + t^4.21 + t^4.23 + t^4.92 + t^4.93 + 2*t^4.95 + t^4.97 + t^5.7 + t^5.94 + 2*t^5.95 + 2*t^5.97 + 2*t^5.98 + t^6.2 + t^6.22 + 2*t^6.23 + 3*t^6.25 + 3*t^6.26 + 3*t^6.28 + 3*t^6.3 + 2*t^6.31 + t^6.33 + t^6.34 + t^6.72 + t^6.74 + t^6.75 + t^6.77 + t^6.99 + t^7. + 2*t^7.02 + t^7.03 + t^7.05 + t^7.74 + t^7.76 + 2*t^7.77 + t^7.79 + t^7.8 + t^8. + 2*t^8.02 + 3*t^8.03 + 3*t^8.05 + t^8.07 - t^8.08 - t^8.1 - 2*t^8.11 - t^8.13 + t^8.27 + t^8.28 + 2*t^8.3 + 3*t^8.31 + 4*t^8.33 + 4*t^8.35 + 5*t^8.36 + 4*t^8.38 + 4*t^8.39 + 3*t^8.41 + 2*t^8.43 + t^8.44 + t^8.46 + t^8.56 + t^8.79 + 2*t^8.8 + 2*t^8.82 + t^8.84 - t^8.85 - t^8.87 - t^8.88 - t^4.05/y - t^6.12/y - t^6.13/y - t^6.15/y - t^6.16/y + t^7.15/y + t^7.16/y + (2*t^7.18)/y + t^7.2/y + t^7.21/y + t^7.92/y + (2*t^7.93)/y + (2*t^7.95)/y + (2*t^7.97)/y + t^7.98/y - t^8.18/y - t^8.2/y - (2*t^8.21)/y - (2*t^8.23)/y - (2*t^8.25)/y - t^8.26/y - t^8.28/y + t^8.94/y + (2*t^8.95)/y + (3*t^8.97)/y + (4*t^8.98)/y - t^4.05*y - t^6.12*y - t^6.13*y - t^6.15*y - t^6.16*y + t^7.15*y + t^7.16*y + 2*t^7.18*y + t^7.2*y + t^7.21*y + t^7.92*y + 2*t^7.93*y + 2*t^7.95*y + 2*t^7.97*y + t^7.98*y - t^8.18*y - t^8.2*y - 2*t^8.21*y - 2*t^8.23*y - 2*t^8.25*y - t^8.26*y - t^8.28*y + t^8.94*y + 2*t^8.95*y + 3*t^8.97*y + 4*t^8.98*y (g1^8*t^2.07)/g2^8 + (g1^5*t^2.08)/g2^7 + (g1^2*t^2.1)/g2^6 + t^2.11/(g1*g2^5) + (g2^9*t^2.85)/g1^3 + g1^4*g2^4*t^3.87 + g1*g2^5*t^3.89 + (g2^6*t^3.9)/g1^2 + (g2^7*t^3.92)/g1^5 + (g1^16*t^4.13)/g2^16 + (g1^13*t^4.15)/g2^15 + (2*g1^10*t^4.16)/g2^14 + (2*g1^7*t^4.18)/g2^13 + (2*g1^4*t^4.2)/g2^12 + (g1*t^4.21)/g2^11 + t^4.23/(g1^2*g2^10) + g1^5*g2*t^4.92 + g1^2*g2^2*t^4.93 + (2*g2^3*t^4.95)/g1 + (g2^4*t^4.97)/g1^4 + (g2^18*t^5.7)/g1^6 + (g1^12*t^5.94)/g2^4 + (2*g1^9*t^5.95)/g2^3 + (2*g1^6*t^5.97)/g2^2 + (2*g1^3*t^5.98)/g2 + (g1^24*t^6.2)/g2^24 + (g1^21*t^6.22)/g2^23 + (2*g1^18*t^6.23)/g2^22 + (3*g1^15*t^6.25)/g2^21 + (3*g1^12*t^6.26)/g2^20 + (3*g1^9*t^6.28)/g2^19 + (3*g1^6*t^6.3)/g2^18 + (2*g1^3*t^6.31)/g2^17 + t^6.33/g2^16 + t^6.34/(g1^3*g2^15) + g1*g2^13*t^6.72 + (g2^14*t^6.74)/g1^2 + (g2^15*t^6.75)/g1^5 + (g2^16*t^6.77)/g1^8 + (g1^13*t^6.99)/g2^7 + (g1^10*t^7.)/g2^6 + (2*g1^7*t^7.02)/g2^5 + (g1^4*t^7.03)/g2^4 + (g1*t^7.05)/g2^3 + g1^8*g2^8*t^7.74 + g1^5*g2^9*t^7.76 + 2*g1^2*g2^10*t^7.77 + (g2^11*t^7.79)/g1 + (g2^12*t^7.8)/g1^4 + (g1^20*t^8.)/g2^12 + (2*g1^17*t^8.02)/g2^11 + (3*g1^14*t^8.03)/g2^10 + (3*g1^11*t^8.05)/g2^9 + (g1^8*t^8.07)/g2^8 - (g1^5*t^8.08)/g2^7 - (g1^2*t^8.1)/g2^6 - (2*t^8.11)/(g1*g2^5) - t^8.13/(g1^4*g2^4) + (g1^32*t^8.27)/g2^32 + (g1^29*t^8.28)/g2^31 + (2*g1^26*t^8.3)/g2^30 + (3*g1^23*t^8.31)/g2^29 + (4*g1^20*t^8.33)/g2^28 + (4*g1^17*t^8.35)/g2^27 + (5*g1^14*t^8.36)/g2^26 + (4*g1^11*t^8.38)/g2^25 + (4*g1^8*t^8.39)/g2^24 + (3*g1^5*t^8.41)/g2^23 + (2*g1^2*t^8.43)/g2^22 + t^8.44/(g1*g2^21) + t^8.46/(g1^4*g2^20) + (g2^27*t^8.56)/g1^9 + g1^9*g2^5*t^8.79 + 2*g1^6*g2^6*t^8.8 + 2*g1^3*g2^7*t^8.82 + g2^8*t^8.84 - (g2^9*t^8.85)/g1^3 - (g2^10*t^8.87)/g1^6 - (g2^11*t^8.88)/g1^9 - (g1*t^4.05)/(g2^3*y) - (g1^9*t^6.12)/(g2^11*y) - (g1^6*t^6.13)/(g2^10*y) - (g1^3*t^6.15)/(g2^9*y) - t^6.16/(g2^8*y) + (g1^13*t^7.15)/(g2^15*y) + (g1^10*t^7.16)/(g2^14*y) + (2*g1^7*t^7.18)/(g2^13*y) + (g1^4*t^7.2)/(g2^12*y) + (g1*t^7.21)/(g2^11*y) + (g1^5*g2*t^7.92)/y + (2*g1^2*g2^2*t^7.93)/y + (2*g2^3*t^7.95)/(g1*y) + (2*g2^4*t^7.97)/(g1^4*y) + (g2^5*t^7.98)/(g1^7*y) - (g1^17*t^8.18)/(g2^19*y) - (g1^14*t^8.2)/(g2^18*y) - (2*g1^11*t^8.21)/(g2^17*y) - (2*g1^8*t^8.23)/(g2^16*y) - (2*g1^5*t^8.25)/(g2^15*y) - (g1^2*t^8.26)/(g2^14*y) - t^8.28/(g1*g2^13*y) + (g1^12*t^8.94)/(g2^4*y) + (2*g1^9*t^8.95)/(g2^3*y) + (3*g1^6*t^8.97)/(g2^2*y) + (4*g1^3*t^8.98)/(g2*y) - (g1*t^4.05*y)/g2^3 - (g1^9*t^6.12*y)/g2^11 - (g1^6*t^6.13*y)/g2^10 - (g1^3*t^6.15*y)/g2^9 - (t^6.16*y)/g2^8 + (g1^13*t^7.15*y)/g2^15 + (g1^10*t^7.16*y)/g2^14 + (2*g1^7*t^7.18*y)/g2^13 + (g1^4*t^7.2*y)/g2^12 + (g1*t^7.21*y)/g2^11 + g1^5*g2*t^7.92*y + 2*g1^2*g2^2*t^7.93*y + (2*g2^3*t^7.95*y)/g1 + (2*g2^4*t^7.97*y)/g1^4 + (g2^5*t^7.98*y)/g1^7 - (g1^17*t^8.18*y)/g2^19 - (g1^14*t^8.2*y)/g2^18 - (2*g1^11*t^8.21*y)/g2^17 - (2*g1^8*t^8.23*y)/g2^16 - (2*g1^5*t^8.25*y)/g2^15 - (g1^2*t^8.26*y)/g2^14 - (t^8.28*y)/(g1*g2^13) + (g1^12*t^8.94*y)/g2^4 + (2*g1^9*t^8.95*y)/g2^3 + (3*g1^6*t^8.97*y)/g2^2 + (4*g1^3*t^8.98*y)/g2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45927 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_2\tilde{q}_1$ + $ M_2\phi_1\tilde{q}_2^2$ 0.6484 0.7955 0.815 [X:[], M:[0.6966, 0.7061], q:[0.4744, 0.829], qb:[0.8195, 0.4712], phi:[0.3515]] t^2.09 + t^2.11 + t^2.12 + t^2.84 + t^3.87 + t^3.88 + t^3.89 + 2*t^3.9 + t^4.18 + t^4.2 + t^4.21 + t^4.22 + t^4.23 + t^4.24 + t^4.93 + 2*t^4.95 + t^4.96 + t^5.67 + t^5.96 + t^5.97 + t^5.98 + 2*t^5.99 - t^6. - t^4.05/y - t^4.05*y detail