Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
45921 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1^2q_2\tilde{q}_1$ + $ M_3\phi_1^2$ | 0.7262 | 0.8734 | 0.8315 | [X:[], M:[0.8033, 0.8033, 1.1539], q:[0.6197, 0.5769], qb:[0.5769, 0.5341], phi:[0.4231]] | [X:[], M:[[-4, -2, 1], [-2, -4, 1], [2, 2, 0]], q:[[2, 2, -1], [2, 0, 0]], qb:[[0, 2, 0], [0, 0, 1]], phi:[[-1, -1, 0]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_2$, $ M_1$, $ q_2\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ M_3$, $ q_2\tilde{q}_1$, $ q_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ M_2^2$, $ M_1M_2$, $ M_1^2$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1^2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_1M_3$, $ M_2M_3$, $ M_2q_2\tilde{q}_1$ | . | -6 | 2*t^2.41 + 2*t^3.33 + 3*t^3.46 + t^4.47 + 2*t^4.6 + 4*t^4.73 + 3*t^4.82 + 2*t^4.86 + t^4.99 + 3*t^5.74 + 2*t^5.87 - 6*t^6. - 4*t^6.13 - t^6.26 + 3*t^6.67 + 6*t^6.79 + 2*t^6.88 + 5*t^6.92 + 3*t^7.01 + 4*t^7.14 + 4*t^7.23 - t^7.27 - 2*t^7.4 - t^7.53 + 2*t^7.81 + 5*t^7.94 + 8*t^8.06 + 4*t^8.15 + 7*t^8.19 + 2*t^8.28 + 2*t^8.32 - 10*t^8.41 + t^8.45 - 4*t^8.54 + t^8.8 + t^8.95 - t^4.27/y - (2*t^6.68)/y + t^7.82/y + (2*t^7.86)/y + (4*t^8.74)/y + (6*t^8.87)/y - t^4.27*y - 2*t^6.68*y + t^7.82*y + 2*t^7.86*y + 4*t^8.74*y + 6*t^8.87*y | (g3*t^2.41)/(g1^2*g2^4) + (g3*t^2.41)/(g1^4*g2^2) + g1^2*g3*t^3.33 + g2^2*g3*t^3.33 + 3*g1^2*g2^2*t^3.46 + (g3^2*t^4.47)/(g1*g2) + (g1*g3*t^4.6)/g2 + (g2*g3*t^4.6)/g1 + (g1^3*t^4.73)/g2 + 2*g1*g2*t^4.73 + (g2^3*t^4.73)/g1 + (g3^2*t^4.82)/(g1^4*g2^8) + (g3^2*t^4.82)/(g1^6*g2^6) + (g3^2*t^4.82)/(g1^8*g2^4) + (g1^3*g2*t^4.86)/g3 + (g1*g2^3*t^4.86)/g3 + (g1^3*g2^3*t^4.99)/g3^2 + (g3^2*t^5.74)/g1^4 + (g3^2*t^5.74)/g2^4 + (g3^2*t^5.74)/(g1^2*g2^2) + (g3*t^5.87)/g1^2 + (g3*t^5.87)/g2^2 - 4*t^6. - (g1^2*t^6.)/g2^2 - (g2^2*t^6.)/g1^2 - (2*g1^2*t^6.13)/g3 - (2*g2^2*t^6.13)/g3 - (g1^2*g2^2*t^6.26)/g3^2 + g1^4*g3^2*t^6.67 + g1^2*g2^2*g3^2*t^6.67 + g2^4*g3^2*t^6.67 + 3*g1^4*g2^2*g3*t^6.79 + 3*g1^2*g2^4*g3*t^6.79 + (g3^3*t^6.88)/(g1^3*g2^5) + (g3^3*t^6.88)/(g1^5*g2^3) + 5*g1^4*g2^4*t^6.92 + (g3^2*t^7.01)/(g1*g2^5) + (g3^2*t^7.01)/(g1^3*g2^3) + (g3^2*t^7.01)/(g1^5*g2) + (g1*g3*t^7.14)/g2^5 + (g3*t^7.14)/(g1*g2^3) + (g3*t^7.14)/(g1^3*g2) + (g2*g3*t^7.14)/g1^5 + (g3^3*t^7.23)/(g1^6*g2^12) + (g3^3*t^7.23)/(g1^8*g2^10) + (g3^3*t^7.23)/(g1^10*g2^8) + (g3^3*t^7.23)/(g1^12*g2^6) - t^7.27/(g1*g2) - (g1*t^7.4)/(g2*g3) - (g2*t^7.4)/(g1*g3) - (g1*g2*t^7.53)/g3^2 + (g1*g3^3*t^7.81)/g2 + (g2*g3^3*t^7.81)/g1 + (g1^3*g3^2*t^7.94)/g2 + 3*g1*g2*g3^2*t^7.94 + (g2^3*g3^2*t^7.94)/g1 + (g1^5*g3*t^8.06)/g2 + 3*g1^3*g2*g3*t^8.06 + 3*g1*g2^3*g3*t^8.06 + (g2^5*g3*t^8.06)/g1 + (g3^3*t^8.15)/(g1^2*g2^8) + (g3^3*t^8.15)/(g1^4*g2^6) + (g3^3*t^8.15)/(g1^6*g2^4) + (g3^3*t^8.15)/(g1^8*g2^2) + 2*g1^5*g2*t^8.19 + 3*g1^3*g2^3*t^8.19 + 2*g1*g2^5*t^8.19 + (g3^2*t^8.28)/(g1^2*g2^6) + (g3^2*t^8.28)/(g1^6*g2^2) + (g1^5*g2^3*t^8.32)/g3 + (g1^3*g2^5*t^8.32)/g3 - (g3*t^8.41)/g1^6 - (g3*t^8.41)/g2^6 - (4*g3*t^8.41)/(g1^2*g2^4) - (4*g3*t^8.41)/(g1^4*g2^2) + (g1^5*g2^5*t^8.45)/g3^2 - t^8.54/g1^4 - t^8.54/g2^4 - (2*t^8.54)/(g1^2*g2^2) + t^8.8/g3^2 + (g3^4*t^8.95)/(g1^2*g2^2) - t^4.27/(g1*g2*y) - (g3*t^6.68)/(g1^3*g2^5*y) - (g3*t^6.68)/(g1^5*g2^3*y) + (g3^2*t^7.82)/(g1^6*g2^6*y) + (g1^3*g2*t^7.86)/(g3*y) + (g1*g2^3*t^7.86)/(g3*y) + (g3^2*t^8.74)/(g1^4*y) + (g3^2*t^8.74)/(g2^4*y) + (2*g3^2*t^8.74)/(g1^2*g2^2*y) + (3*g3*t^8.87)/(g1^2*y) + (3*g3*t^8.87)/(g2^2*y) - (t^4.27*y)/(g1*g2) - (g3*t^6.68*y)/(g1^3*g2^5) - (g3*t^6.68*y)/(g1^5*g2^3) + (g3^2*t^7.82*y)/(g1^6*g2^6) + (g1^3*g2*t^7.86*y)/g3 + (g1*g2^3*t^7.86*y)/g3 + (g3^2*t^8.74*y)/g1^4 + (g3^2*t^8.74*y)/g2^4 + (2*g3^2*t^8.74*y)/(g1^2*g2^2) + (3*g3*t^8.87*y)/g1^2 + (3*g3*t^8.87*y)/g2^2 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
45848 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1^2q_2\tilde{q}_1$ | 0.7406 | 0.896 | 0.8266 | [X:[], M:[0.7809, 0.7809], q:[0.6288, 0.5903], qb:[0.5903, 0.5518], phi:[0.4097]] | 2*t^2.34 + t^2.46 + 2*t^3.43 + 2*t^3.54 + t^4.54 + 2*t^4.66 + 3*t^4.69 + 4*t^4.77 + 2*t^4.8 + 2*t^4.89 + t^4.92 + t^5. + 3*t^5.77 + 2*t^5.88 - 4*t^6. - t^4.23/y - t^4.23*y | detail |