Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
45909 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4\phi_1^2$ 0.742 0.9005 0.8241 [X:[], M:[0.7832, 0.7832, 0.7832, 1.1759], q:[0.6493, 0.5675], qb:[0.5675, 0.5675], phi:[0.4121]] [X:[], M:[[-4, -4, 0, 0], [-4, 0, -4, 0], [-4, 0, 0, -4], [2, 2, 2, 2]], q:[[4, 0, 0, 0], [0, 4, 0, 0]], qb:[[0, 0, 4, 0], [0, 0, 0, 4]], phi:[[-1, -1, -1, -1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_2$, $ M_3$, $ q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ M_4$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_1^2$, $ M_2^2$, $ M_1M_2$, $ M_3^2$, $ M_1M_3$, $ M_2M_3$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1^2$, $ M_2q_2\tilde{q}_1$, $ M_3q_2\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_3q_2\tilde{q}_1$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_3M_4$, $ M_2M_4$, $ M_1M_4$ . -10 3*t^2.35 + 3*t^3.4 + t^3.53 + 6*t^4.64 + 6*t^4.7 + 3*t^4.89 + t^5.13 + 6*t^5.75 + 3*t^5.88 - 10*t^6. - 3*t^6.25 + 6*t^6.81 + 3*t^6.93 + 15*t^6.99 + 10*t^7.05 + 15*t^8.05 + 10*t^8.1 + 6*t^8.23 - 27*t^8.35 - 3*t^8.6 - t^4.24/y - (3*t^6.59)/y + (3*t^7.7)/y + (3*t^7.89)/y + (9*t^8.75)/y + (3*t^8.88)/y - (6*t^8.94)/y - t^4.24*y - 3*t^6.59*y + 3*t^7.7*y + 3*t^7.89*y + 9*t^8.75*y + 3*t^8.88*y - 6*t^8.94*y t^2.35/(g1^4*g2^4) + t^2.35/(g1^4*g3^4) + t^2.35/(g1^4*g4^4) + g2^4*g3^4*t^3.4 + g2^4*g4^4*t^3.4 + g3^4*g4^4*t^3.4 + g1^2*g2^2*g3^2*g4^2*t^3.53 + (g2^7*t^4.64)/(g1*g3*g4) + (g2^3*g3^3*t^4.64)/(g1*g4) + (g3^7*t^4.64)/(g1*g2*g4) + (g2^3*g4^3*t^4.64)/(g1*g3) + (g3^3*g4^3*t^4.64)/(g1*g2) + (g4^7*t^4.64)/(g1*g2*g3) + t^4.7/(g1^8*g2^8) + t^4.7/(g1^8*g3^8) + t^4.7/(g1^8*g2^4*g3^4) + t^4.7/(g1^8*g4^8) + t^4.7/(g1^8*g2^4*g4^4) + t^4.7/(g1^8*g3^4*g4^4) + (g1^3*g2^3*t^4.89)/(g3*g4) + (g1^3*g3^3*t^4.89)/(g2*g4) + (g1^3*g4^3*t^4.89)/(g2*g3) + (g1^7*t^5.13)/(g2*g3*g4) + (g2^4*t^5.75)/g1^4 + (g3^4*t^5.75)/g1^4 + (g2^4*g3^4*t^5.75)/(g1^4*g4^4) + (g4^4*t^5.75)/g1^4 + (g2^4*g4^4*t^5.75)/(g1^4*g3^4) + (g3^4*g4^4*t^5.75)/(g1^4*g2^4) + (g2^2*g3^2*t^5.88)/(g1^2*g4^2) + (g2^2*g4^2*t^5.88)/(g1^2*g3^2) + (g3^2*g4^2*t^5.88)/(g1^2*g2^2) - 4*t^6. - (g2^4*t^6.)/g3^4 - (g3^4*t^6.)/g2^4 - (g2^4*t^6.)/g4^4 - (g3^4*t^6.)/g4^4 - (g4^4*t^6.)/g2^4 - (g4^4*t^6.)/g3^4 - (g1^4*t^6.25)/g2^4 - (g1^4*t^6.25)/g3^4 - (g1^4*t^6.25)/g4^4 + g2^8*g3^8*t^6.81 + g2^8*g3^4*g4^4*t^6.81 + g2^4*g3^8*g4^4*t^6.81 + g2^8*g4^8*t^6.81 + g2^4*g3^4*g4^8*t^6.81 + g3^8*g4^8*t^6.81 + g1^2*g2^6*g3^6*g4^2*t^6.93 + g1^2*g2^6*g3^2*g4^6*t^6.93 + g1^2*g2^2*g3^6*g4^6*t^6.93 + (g2^7*t^6.99)/(g1^5*g3*g4^5) + (g2^3*g3^3*t^6.99)/(g1^5*g4^5) + (g3^7*t^6.99)/(g1^5*g2*g4^5) + (g2^7*t^6.99)/(g1^5*g3^5*g4) + (2*g2^3*t^6.99)/(g1^5*g3*g4) + (2*g3^3*t^6.99)/(g1^5*g2*g4) + (g3^7*t^6.99)/(g1^5*g2^5*g4) + (g2^3*g4^3*t^6.99)/(g1^5*g3^5) + (2*g4^3*t^6.99)/(g1^5*g2*g3) + (g3^3*g4^3*t^6.99)/(g1^5*g2^5) + (g4^7*t^6.99)/(g1^5*g2*g3^5) + (g4^7*t^6.99)/(g1^5*g2^5*g3) + t^7.05/(g1^12*g2^12) + t^7.05/(g1^12*g3^12) + t^7.05/(g1^12*g2^4*g3^8) + t^7.05/(g1^12*g2^8*g3^4) + t^7.05/(g1^12*g4^12) + t^7.05/(g1^12*g2^4*g4^8) + t^7.05/(g1^12*g3^4*g4^8) + t^7.05/(g1^12*g2^8*g4^4) + t^7.05/(g1^12*g3^8*g4^4) + t^7.05/(g1^12*g2^4*g3^4*g4^4) + (g2^11*g3^3*t^8.05)/(g1*g4) + (g2^7*g3^7*t^8.05)/(g1*g4) + (g2^3*g3^11*t^8.05)/(g1*g4) + (g2^11*g4^3*t^8.05)/(g1*g3) + (2*g2^7*g3^3*g4^3*t^8.05)/g1 + (2*g2^3*g3^7*g4^3*t^8.05)/g1 + (g3^11*g4^3*t^8.05)/(g1*g2) + (g2^7*g4^7*t^8.05)/(g1*g3) + (2*g2^3*g3^3*g4^7*t^8.05)/g1 + (g3^7*g4^7*t^8.05)/(g1*g2) + (g2^3*g4^11*t^8.05)/(g1*g3) + (g3^3*g4^11*t^8.05)/(g1*g2) + t^8.1/g1^8 + (g2^4*t^8.1)/(g1^8*g3^4) + (g3^4*t^8.1)/(g1^8*g2^4) + (g2^4*g3^4*t^8.1)/(g1^8*g4^8) + (g2^4*t^8.1)/(g1^8*g4^4) + (g3^4*t^8.1)/(g1^8*g4^4) + (g4^4*t^8.1)/(g1^8*g2^4) + (g2^4*g4^4*t^8.1)/(g1^8*g3^8) + (g4^4*t^8.1)/(g1^8*g3^4) + (g3^4*g4^4*t^8.1)/(g1^8*g2^8) + (g2^2*g3^2*t^8.23)/(g1^6*g4^6) + (g2^2*t^8.23)/(g1^6*g3^2*g4^2) + (g3^2*t^8.23)/(g1^6*g2^2*g4^2) + (g2^2*g4^2*t^8.23)/(g1^6*g3^6) + (g4^2*t^8.23)/(g1^6*g2^2*g3^2) + (g3^2*g4^2*t^8.23)/(g1^6*g2^6) - (5*t^8.35)/(g1^4*g2^4) - (g2^4*t^8.35)/(g1^4*g3^8) - (5*t^8.35)/(g1^4*g3^4) - (g3^4*t^8.35)/(g1^4*g2^8) - (g2^4*t^8.35)/(g1^4*g4^8) - (g3^4*t^8.35)/(g1^4*g4^8) - (5*t^8.35)/(g1^4*g4^4) - (2*g2^4*t^8.35)/(g1^4*g3^4*g4^4) - (2*g3^4*t^8.35)/(g1^4*g2^4*g4^4) - (g4^4*t^8.35)/(g1^4*g2^8) - (g4^4*t^8.35)/(g1^4*g3^8) - (2*g4^4*t^8.35)/(g1^4*g2^4*g3^4) - t^8.6/(g2^4*g3^4) - t^8.6/(g2^4*g4^4) - t^8.6/(g3^4*g4^4) - t^4.24/(g1*g2*g3*g4*y) - t^6.59/(g1^5*g2*g3*g4^5*y) - t^6.59/(g1^5*g2*g3^5*g4*y) - t^6.59/(g1^5*g2^5*g3*g4*y) + t^7.7/(g1^8*g2^4*g3^4*y) + t^7.7/(g1^8*g2^4*g4^4*y) + t^7.7/(g1^8*g3^4*g4^4*y) + (g1^3*g2^3*t^7.89)/(g3*g4*y) + (g1^3*g3^3*t^7.89)/(g2*g4*y) + (g1^3*g4^3*t^7.89)/(g2*g3*y) + (2*g2^4*t^8.75)/(g1^4*y) + (2*g3^4*t^8.75)/(g1^4*y) + (g2^4*g3^4*t^8.75)/(g1^4*g4^4*y) + (2*g4^4*t^8.75)/(g1^4*y) + (g2^4*g4^4*t^8.75)/(g1^4*g3^4*y) + (g3^4*g4^4*t^8.75)/(g1^4*g2^4*y) + (g2^2*g3^2*t^8.88)/(g1^2*g4^2*y) + (g2^2*g4^2*t^8.88)/(g1^2*g3^2*y) + (g3^2*g4^2*t^8.88)/(g1^2*g2^2*y) - t^8.94/(g1^9*g2*g3*g4^9*y) - t^8.94/(g1^9*g2*g3^5*g4^5*y) - t^8.94/(g1^9*g2^5*g3*g4^5*y) - t^8.94/(g1^9*g2*g3^9*g4*y) - t^8.94/(g1^9*g2^5*g3^5*g4*y) - t^8.94/(g1^9*g2^9*g3*g4*y) - (t^4.24*y)/(g1*g2*g3*g4) - (t^6.59*y)/(g1^5*g2*g3*g4^5) - (t^6.59*y)/(g1^5*g2*g3^5*g4) - (t^6.59*y)/(g1^5*g2^5*g3*g4) + (t^7.7*y)/(g1^8*g2^4*g3^4) + (t^7.7*y)/(g1^8*g2^4*g4^4) + (t^7.7*y)/(g1^8*g3^4*g4^4) + (g1^3*g2^3*t^7.89*y)/(g3*g4) + (g1^3*g3^3*t^7.89*y)/(g2*g4) + (g1^3*g4^3*t^7.89*y)/(g2*g3) + (2*g2^4*t^8.75*y)/g1^4 + (2*g3^4*t^8.75*y)/g1^4 + (g2^4*g3^4*t^8.75*y)/(g1^4*g4^4) + (2*g4^4*t^8.75*y)/g1^4 + (g2^4*g4^4*t^8.75*y)/(g1^4*g3^4) + (g3^4*g4^4*t^8.75*y)/(g1^4*g2^4) + (g2^2*g3^2*t^8.88*y)/(g1^2*g4^2) + (g2^2*g4^2*t^8.88*y)/(g1^2*g3^2) + (g3^2*g4^2*t^8.88*y)/(g1^2*g2^2) - (t^8.94*y)/(g1^9*g2*g3*g4^9) - (t^8.94*y)/(g1^9*g2*g3^5*g4^5) - (t^8.94*y)/(g1^9*g2^5*g3*g4^5) - (t^8.94*y)/(g1^9*g2*g3^9*g4) - (t^8.94*y)/(g1^9*g2^5*g3^5*g4) - (t^8.94*y)/(g1^9*g2^9*g3*g4)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45951 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4\phi_1^2$ + $ M_5q_2\tilde{q}_2$ 0.7566 0.9235 0.8193 [X:[], M:[0.7634, 0.797, 0.7634, 1.2021, 0.7989], q:[0.6361, 0.6005], qb:[0.5669, 0.6005], phi:[0.399]] 2*t^2.29 + t^2.39 + t^2.4 + 2*t^3.5 + t^3.61 + 3*t^4.58 + t^4.6 + 2*t^4.68 + 2*t^4.69 + 2*t^4.7 + t^4.78 + 2*t^4.79 + 3*t^4.8 + t^4.81 + 2*t^4.91 + t^5.01 + 3*t^5.79 + 2*t^5.9 - 4*t^6. - t^4.2/y - t^4.2*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45843 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ 0.7577 0.9271 0.8174 [X:[], M:[0.7655, 0.7655, 0.7655], q:[0.6539, 0.5806], qb:[0.5806, 0.5806], phi:[0.4011]] 3*t^2.3 + t^2.41 + 3*t^3.48 + 6*t^4.59 + 6*t^4.69 + 3*t^4.7 + t^4.81 + 3*t^4.91 + t^5.13 + 6*t^5.78 + 3*t^5.89 - 10*t^6. - t^4.2/y - t^4.2*y detail