Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
45905 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ 0.7356 0.9231 0.7969 [M:[0.6737, 0.6737, 0.6737], q:[0.7979, 0.5284], qb:[0.5284, 0.5284], phi:[0.4042]] [M:[[-8, -1, -1], [-1, -8, -1], [-1, -1, -8]], q:[[1, 1, 1], [7, 0, 0]], qb:[[0, 7, 0], [0, 0, 7]], phi:[[-2, -2, -2]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }M_{2}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{1}M_{3}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ ${}$ -9 3*t^2.021 + t^2.425 + 3*t^3.171 + 6*t^4.042 + 6*t^4.383 + 3*t^4.446 + t^4.85 + 9*t^5.192 + 3*t^5.596 - 9*t^6. + 10*t^6.063 + 6*t^6.341 + 15*t^6.404 + 6*t^6.467 + 3*t^6.808 + 3*t^6.871 - t^7.15 + 10*t^7.213 + t^7.276 + 15*t^7.554 + 9*t^7.617 - 6*t^7.958 - 24*t^8.021 + 15*t^8.084 + 10*t^8.362 + 18*t^8.425 + 10*t^8.488 + 18*t^8.766 + 12*t^8.829 + 6*t^8.892 - t^4.213/y - (3*t^6.234)/y - t^6.638/y + (3*t^7.042)/y + (3*t^7.446)/y + t^7.787/y + (12*t^8.192)/y - (6*t^8.255)/y + (3*t^8.596)/y - (3*t^8.659)/y - t^4.213*y - 3*t^6.234*y - t^6.638*y + 3*t^7.042*y + 3*t^7.446*y + t^7.787*y + 12*t^8.192*y - 6*t^8.255*y + 3*t^8.596*y - 3*t^8.659*y t^2.021/(g1*g2*g3^8) + t^2.021/(g1*g2^8*g3) + t^2.021/(g1^8*g2*g3) + t^2.425/(g1^4*g2^4*g3^4) + g1^7*g2^7*t^3.171 + g1^7*g3^7*t^3.171 + g2^7*g3^7*t^3.171 + t^4.042/(g1^2*g2^2*g3^16) + t^4.042/(g1^2*g2^9*g3^9) + t^4.042/(g1^9*g2^2*g3^9) + t^4.042/(g1^2*g2^16*g3^2) + t^4.042/(g1^9*g2^9*g3^2) + t^4.042/(g1^16*g2^2*g3^2) + (g1^12*t^4.383)/(g2^2*g3^2) + (g1^5*g2^5*t^4.383)/g3^2 + (g2^12*t^4.383)/(g1^2*g3^2) + (g1^5*g3^5*t^4.383)/g2^2 + (g2^5*g3^5*t^4.383)/g1^2 + (g3^12*t^4.383)/(g1^2*g2^2) + t^4.446/(g1^5*g2^5*g3^12) + t^4.446/(g1^5*g2^12*g3^5) + t^4.446/(g1^12*g2^5*g3^5) + t^4.85/(g1^8*g2^8*g3^8) + (g1^6*g2^6*t^5.192)/g3^8 + (2*g1^6*t^5.192)/(g2*g3) + (2*g2^6*t^5.192)/(g1*g3) + (g1^6*g3^6*t^5.192)/g2^8 + (2*g3^6*t^5.192)/(g1*g2) + (g2^6*g3^6*t^5.192)/g1^8 + (g1^3*g2^3*t^5.596)/g3^4 + (g1^3*g3^3*t^5.596)/g2^4 + (g2^3*g3^3*t^5.596)/g1^4 - 3*t^6. - (g1^7*t^6.)/g2^7 - (g2^7*t^6.)/g1^7 - (g1^7*t^6.)/g3^7 - (g2^7*t^6.)/g3^7 - (g3^7*t^6.)/g1^7 - (g3^7*t^6.)/g2^7 + t^6.063/(g1^3*g2^3*g3^24) + t^6.063/(g1^3*g2^10*g3^17) + t^6.063/(g1^10*g2^3*g3^17) + t^6.063/(g1^3*g2^17*g3^10) + t^6.063/(g1^10*g2^10*g3^10) + t^6.063/(g1^17*g2^3*g3^10) + t^6.063/(g1^3*g2^24*g3^3) + t^6.063/(g1^10*g2^17*g3^3) + t^6.063/(g1^17*g2^10*g3^3) + t^6.063/(g1^24*g2^3*g3^3) + g1^14*g2^14*t^6.341 + g1^14*g2^7*g3^7*t^6.341 + g1^7*g2^14*g3^7*t^6.341 + g1^14*g3^14*t^6.341 + g1^7*g2^7*g3^14*t^6.341 + g2^14*g3^14*t^6.341 + (g1^11*t^6.404)/(g2^3*g3^10) + (g1^4*g2^4*t^6.404)/g3^10 + (g2^11*t^6.404)/(g1^3*g3^10) + (g1^11*t^6.404)/(g2^10*g3^3) + (2*g1^4*t^6.404)/(g2^3*g3^3) + (2*g2^4*t^6.404)/(g1^3*g3^3) + (g2^11*t^6.404)/(g1^10*g3^3) + (g1^4*g3^4*t^6.404)/g2^10 + (2*g3^4*t^6.404)/(g1^3*g2^3) + (g2^4*g3^4*t^6.404)/g1^10 + (g3^11*t^6.404)/(g1^3*g2^10) + (g3^11*t^6.404)/(g1^10*g2^3) + t^6.467/(g1^6*g2^6*g3^20) + t^6.467/(g1^6*g2^13*g3^13) + t^6.467/(g1^13*g2^6*g3^13) + t^6.467/(g1^6*g2^20*g3^6) + t^6.467/(g1^13*g2^13*g3^6) + t^6.467/(g1^20*g2^6*g3^6) + (g1^8*t^6.808)/(g2^6*g3^6) + (g2^8*t^6.808)/(g1^6*g3^6) + (g3^8*t^6.808)/(g1^6*g2^6) + t^6.871/(g1^9*g2^9*g3^16) + t^6.871/(g1^9*g2^16*g3^9) + t^6.871/(g1^16*g2^9*g3^9) - g1^8*g2^8*g3^8*t^7.15 + (g1^5*g2^5*t^7.213)/g3^16 + (g1^5*t^7.213)/(g2^2*g3^9) + (g2^5*t^7.213)/(g1^2*g3^9) + (g1^5*t^7.213)/(g2^9*g3^2) + t^7.213/(g1^2*g2^2*g3^2) + (g2^5*t^7.213)/(g1^9*g3^2) + (g1^5*g3^5*t^7.213)/g2^16 + (g3^5*t^7.213)/(g1^2*g2^9) + (g3^5*t^7.213)/(g1^9*g2^2) + (g2^5*g3^5*t^7.213)/g1^16 + t^7.276/(g1^12*g2^12*g3^12) + (g1^19*g2^5*t^7.554)/g3^2 + (g1^12*g2^12*t^7.554)/g3^2 + (g1^5*g2^19*t^7.554)/g3^2 + (g1^19*g3^5*t^7.554)/g2^2 + 2*g1^12*g2^5*g3^5*t^7.554 + 2*g1^5*g2^12*g3^5*t^7.554 + (g2^19*g3^5*t^7.554)/g1^2 + (g1^12*g3^12*t^7.554)/g2^2 + 2*g1^5*g2^5*g3^12*t^7.554 + (g2^12*g3^12*t^7.554)/g1^2 + (g1^5*g3^19*t^7.554)/g2^2 + (g2^5*g3^19*t^7.554)/g1^2 + (g1^2*g2^2*t^7.617)/g3^12 + (2*g1^2*t^7.617)/(g2^5*g3^5) + (2*g2^2*t^7.617)/(g1^5*g3^5) + (g1^2*g3^2*t^7.617)/g2^12 + (2*g3^2*t^7.617)/(g1^5*g2^5) + (g2^2*g3^2*t^7.617)/g1^12 - g1^16*g2^2*g3^2*t^7.958 - g1^9*g2^9*g3^2*t^7.958 - g1^2*g2^16*g3^2*t^7.958 - g1^9*g2^2*g3^9*t^7.958 - g1^2*g2^9*g3^9*t^7.958 - g1^2*g2^2*g3^16*t^7.958 - (g1^6*t^8.021)/(g2*g3^15) - (g2^6*t^8.021)/(g1*g3^15) - (2*g1^6*t^8.021)/(g2^8*g3^8) - (4*t^8.021)/(g1*g2*g3^8) - (2*g2^6*t^8.021)/(g1^8*g3^8) - (g1^6*t^8.021)/(g2^15*g3) - (4*t^8.021)/(g1*g2^8*g3) - (4*t^8.021)/(g1^8*g2*g3) - (g2^6*t^8.021)/(g1^15*g3) - (g3^6*t^8.021)/(g1*g2^15) - (2*g3^6*t^8.021)/(g1^8*g2^8) - (g3^6*t^8.021)/(g1^15*g2) + t^8.084/(g1^4*g2^4*g3^32) + t^8.084/(g1^4*g2^11*g3^25) + t^8.084/(g1^11*g2^4*g3^25) + t^8.084/(g1^4*g2^18*g3^18) + t^8.084/(g1^11*g2^11*g3^18) + t^8.084/(g1^18*g2^4*g3^18) + t^8.084/(g1^4*g2^25*g3^11) + t^8.084/(g1^11*g2^18*g3^11) + t^8.084/(g1^18*g2^11*g3^11) + t^8.084/(g1^25*g2^4*g3^11) + t^8.084/(g1^4*g2^32*g3^4) + t^8.084/(g1^11*g2^25*g3^4) + t^8.084/(g1^18*g2^18*g3^4) + t^8.084/(g1^25*g2^11*g3^4) + t^8.084/(g1^32*g2^4*g3^4) + (g1^13*g2^13*t^8.362)/g3^8 + (g1^13*g2^6*t^8.362)/g3 + (g1^6*g2^13*t^8.362)/g3 + (g1^13*g3^6*t^8.362)/g2 + g1^6*g2^6*g3^6*t^8.362 + (g2^13*g3^6*t^8.362)/g1 + (g1^13*g3^13*t^8.362)/g2^8 + (g1^6*g3^13*t^8.362)/g2 + (g2^6*g3^13*t^8.362)/g1 + (g2^13*g3^13*t^8.362)/g1^8 + (g1^10*t^8.425)/(g2^4*g3^18) + (g1^3*g2^3*t^8.425)/g3^18 + (g2^10*t^8.425)/(g1^4*g3^18) + (g1^10*t^8.425)/(g2^11*g3^11) + (g1^3*t^8.425)/(g2^4*g3^11) + (g2^3*t^8.425)/(g1^4*g3^11) + (g2^10*t^8.425)/(g1^11*g3^11) + (g1^10*t^8.425)/(g2^18*g3^4) + (g1^3*t^8.425)/(g2^11*g3^4) + (g2^3*t^8.425)/(g1^11*g3^4) + (g2^10*t^8.425)/(g1^18*g3^4) + (g1^3*g3^3*t^8.425)/g2^18 + (g3^3*t^8.425)/(g1^4*g2^11) + (g3^3*t^8.425)/(g1^11*g2^4) + (g2^3*g3^3*t^8.425)/g1^18 + (g3^10*t^8.425)/(g1^4*g2^18) + (g3^10*t^8.425)/(g1^11*g2^11) + (g3^10*t^8.425)/(g1^18*g2^4) + t^8.488/(g1^7*g2^7*g3^28) + t^8.488/(g1^7*g2^14*g3^21) + t^8.488/(g1^14*g2^7*g3^21) + t^8.488/(g1^7*g2^21*g3^14) + t^8.488/(g1^14*g2^14*g3^14) + t^8.488/(g1^21*g2^7*g3^14) + t^8.488/(g1^7*g2^28*g3^7) + t^8.488/(g1^14*g2^21*g3^7) + t^8.488/(g1^21*g2^14*g3^7) + t^8.488/(g1^28*g2^7*g3^7) + (g1^24*t^8.766)/(g2^4*g3^4) + (g1^17*g2^3*t^8.766)/g3^4 + (2*g1^10*g2^10*t^8.766)/g3^4 + (g1^3*g2^17*t^8.766)/g3^4 + (g2^24*t^8.766)/(g1^4*g3^4) + (g1^17*g3^3*t^8.766)/g2^4 + g1^10*g2^3*g3^3*t^8.766 + g1^3*g2^10*g3^3*t^8.766 + (g2^17*g3^3*t^8.766)/g1^4 + (2*g1^10*g3^10*t^8.766)/g2^4 + g1^3*g2^3*g3^10*t^8.766 + (2*g2^10*g3^10*t^8.766)/g1^4 + (g1^3*g3^17*t^8.766)/g2^4 + (g2^3*g3^17*t^8.766)/g1^4 + (g3^24*t^8.766)/(g1^4*g2^4) + t^8.829/g1^14 + t^8.829/g2^14 + t^8.829/(g1^7*g2^7) + t^8.829/g3^14 + (g1^7*t^8.829)/(g2^7*g3^14) + (g2^7*t^8.829)/(g1^7*g3^14) + t^8.829/(g1^7*g3^7) + (g1^7*t^8.829)/(g2^14*g3^7) + t^8.829/(g2^7*g3^7) + (g2^7*t^8.829)/(g1^14*g3^7) + (g3^7*t^8.829)/(g1^7*g2^14) + (g3^7*t^8.829)/(g1^14*g2^7) + t^8.892/(g1^10*g2^10*g3^24) + t^8.892/(g1^10*g2^17*g3^17) + t^8.892/(g1^17*g2^10*g3^17) + t^8.892/(g1^10*g2^24*g3^10) + t^8.892/(g1^17*g2^17*g3^10) + t^8.892/(g1^24*g2^10*g3^10) - t^4.213/(g1^2*g2^2*g3^2*y) - t^6.234/(g1^3*g2^3*g3^10*y) - t^6.234/(g1^3*g2^10*g3^3*y) - t^6.234/(g1^10*g2^3*g3^3*y) - t^6.638/(g1^6*g2^6*g3^6*y) + t^7.042/(g1^2*g2^9*g3^9*y) + t^7.042/(g1^9*g2^2*g3^9*y) + t^7.042/(g1^9*g2^9*g3^2*y) + t^7.446/(g1^5*g2^5*g3^12*y) + t^7.446/(g1^5*g2^12*g3^5*y) + t^7.446/(g1^12*g2^5*g3^5*y) + (g1^2*g2^2*g3^2*t^7.787)/y + (g1^6*g2^6*t^8.192)/(g3^8*y) + (3*g1^6*t^8.192)/(g2*g3*y) + (3*g2^6*t^8.192)/(g1*g3*y) + (g1^6*g3^6*t^8.192)/(g2^8*y) + (3*g3^6*t^8.192)/(g1*g2*y) + (g2^6*g3^6*t^8.192)/(g1^8*y) - t^8.255/(g1^4*g2^4*g3^18*y) - t^8.255/(g1^4*g2^11*g3^11*y) - t^8.255/(g1^11*g2^4*g3^11*y) - t^8.255/(g1^4*g2^18*g3^4*y) - t^8.255/(g1^11*g2^11*g3^4*y) - t^8.255/(g1^18*g2^4*g3^4*y) + (g1^3*g2^3*t^8.596)/(g3^4*y) + (g1^3*g3^3*t^8.596)/(g2^4*y) + (g2^3*g3^3*t^8.596)/(g1^4*y) - t^8.659/(g1^7*g2^7*g3^14*y) - t^8.659/(g1^7*g2^14*g3^7*y) - t^8.659/(g1^14*g2^7*g3^7*y) - (t^4.213*y)/(g1^2*g2^2*g3^2) - (t^6.234*y)/(g1^3*g2^3*g3^10) - (t^6.234*y)/(g1^3*g2^10*g3^3) - (t^6.234*y)/(g1^10*g2^3*g3^3) - (t^6.638*y)/(g1^6*g2^6*g3^6) + (t^7.042*y)/(g1^2*g2^9*g3^9) + (t^7.042*y)/(g1^9*g2^2*g3^9) + (t^7.042*y)/(g1^9*g2^9*g3^2) + (t^7.446*y)/(g1^5*g2^5*g3^12) + (t^7.446*y)/(g1^5*g2^12*g3^5) + (t^7.446*y)/(g1^12*g2^5*g3^5) + g1^2*g2^2*g3^2*t^7.787*y + (g1^6*g2^6*t^8.192*y)/g3^8 + (3*g1^6*t^8.192*y)/(g2*g3) + (3*g2^6*t^8.192*y)/(g1*g3) + (g1^6*g3^6*t^8.192*y)/g2^8 + (3*g3^6*t^8.192*y)/(g1*g2) + (g2^6*g3^6*t^8.192*y)/g1^8 - (t^8.255*y)/(g1^4*g2^4*g3^18) - (t^8.255*y)/(g1^4*g2^11*g3^11) - (t^8.255*y)/(g1^11*g2^4*g3^11) - (t^8.255*y)/(g1^4*g2^18*g3^4) - (t^8.255*y)/(g1^11*g2^11*g3^4) - (t^8.255*y)/(g1^18*g2^4*g3^4) + (g1^3*g2^3*t^8.596*y)/g3^4 + (g1^3*g3^3*t^8.596*y)/g2^4 + (g2^3*g3^3*t^8.596*y)/g1^4 - (t^8.659*y)/(g1^7*g2^7*g3^14) - (t^8.659*y)/(g1^7*g2^14*g3^7) - (t^8.659*y)/(g1^14*g2^7*g3^7)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45983 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{2}$ 0.6293 0.8168 0.7704 [M:[0.9733, 0.7967, 0.7967], q:[0.7433, 0.2834], qb:[0.4599, 0.4599], phi:[0.5134]] 2*t^2.23 + 2*t^2.39 + t^2.76 + t^2.92 + t^3.08 + t^3.24 + 2*t^3.77 + 3*t^4.3 + 3*t^4.46 + 4*t^4.62 + 3*t^4.78 + 2*t^4.99 + 4*t^5.15 + 4*t^5.31 + 2*t^5.47 + t^5.519 + 2*t^5.631 + t^5.679 + t^5.84 - t^4.54/y - t^4.54*y detail
46026 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{3}^{2}$ 0.6271 0.8146 0.7698 [M:[0.7084, 0.7084, 1.0], q:[0.7583, 0.5333], qb:[0.5333, 0.2417], phi:[0.4834]] 2*t^2.125 + 2*t^2.325 + 2*t^2.9 + t^3. + t^3.2 + 2*t^3.775 + 3*t^4.25 + 4*t^4.45 + 6*t^4.65 + 4*t^5.025 + 4*t^5.225 + 4*t^5.325 + 2*t^5.525 + 3*t^5.8 + 5*t^5.9 - 5*t^6. - t^4.45/y - t^4.45*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45868 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}$ 0.7148 0.8821 0.8104 [M:[0.6739, 0.6739], q:[0.7976, 0.5285], qb:[0.5285, 0.526], phi:[0.4048]] 2*t^2.022 + t^2.429 + 2*t^3.164 + t^3.171 + t^3.971 + 3*t^4.043 + t^4.371 + 2*t^4.378 + 3*t^4.386 + 2*t^4.451 + t^4.858 + 4*t^5.185 + 2*t^5.193 + 2*t^5.593 + t^5.6 - 5*t^6. - t^4.214/y - t^4.214*y detail