Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
45905 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ M_3q_1\tilde{q}_2$ 0.7356 0.9231 0.7969 [X:[], M:[0.6737, 0.6737, 0.6737], q:[0.7979, 0.5284], qb:[0.5284, 0.5284], phi:[0.4042]] [X:[], M:[[-8, -1, -1], [-1, -8, -1], [-1, -1, -8]], q:[[1, 1, 1], [7, 0, 0]], qb:[[0, 7, 0], [0, 0, 7]], phi:[[-2, -2, -2]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_3$, $ M_2$, $ M_1$, $ \phi_1^2$, $ q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ M_3^2$, $ M_2M_3$, $ M_1M_3$, $ M_2^2$, $ M_1M_2$, $ M_1^2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_3\phi_1^2$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ \phi_1^4$, $ M_3q_2\tilde{q}_1$, $ \phi_1q_1q_2$, $ M_2q_2\tilde{q}_1$, $ M_3q_2\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ \phi_1q_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$ . -9 3*t^2.02 + t^2.43 + 3*t^3.17 + 6*t^4.04 + 6*t^4.38 + 3*t^4.45 + t^4.85 + 9*t^5.19 + 3*t^5.6 - 9*t^6. + 10*t^6.06 + 6*t^6.34 + 15*t^6.4 + 6*t^6.47 + 3*t^6.81 + 3*t^6.87 - t^7.15 + 10*t^7.21 + t^7.28 + 15*t^7.55 + 9*t^7.62 - 6*t^7.96 - 24*t^8.02 + 15*t^8.08 + 10*t^8.36 + 18*t^8.43 + 10*t^8.49 + 18*t^8.77 + 12*t^8.83 + 6*t^8.89 - t^4.21/y - (3*t^6.23)/y - t^6.64/y + (3*t^7.04)/y + (3*t^7.45)/y + t^7.79/y + (12*t^8.19)/y - (6*t^8.25)/y + (3*t^8.6)/y - (3*t^8.66)/y - t^4.21*y - 3*t^6.23*y - t^6.64*y + 3*t^7.04*y + 3*t^7.45*y + t^7.79*y + 12*t^8.19*y - 6*t^8.25*y + 3*t^8.6*y - 3*t^8.66*y t^2.02/(g1*g2*g3^8) + t^2.02/(g1*g2^8*g3) + t^2.02/(g1^8*g2*g3) + t^2.43/(g1^4*g2^4*g3^4) + g1^7*g2^7*t^3.17 + g1^7*g3^7*t^3.17 + g2^7*g3^7*t^3.17 + t^4.04/(g1^2*g2^2*g3^16) + t^4.04/(g1^2*g2^9*g3^9) + t^4.04/(g1^9*g2^2*g3^9) + t^4.04/(g1^2*g2^16*g3^2) + t^4.04/(g1^9*g2^9*g3^2) + t^4.04/(g1^16*g2^2*g3^2) + (g1^12*t^4.38)/(g2^2*g3^2) + (g1^5*g2^5*t^4.38)/g3^2 + (g2^12*t^4.38)/(g1^2*g3^2) + (g1^5*g3^5*t^4.38)/g2^2 + (g2^5*g3^5*t^4.38)/g1^2 + (g3^12*t^4.38)/(g1^2*g2^2) + t^4.45/(g1^5*g2^5*g3^12) + t^4.45/(g1^5*g2^12*g3^5) + t^4.45/(g1^12*g2^5*g3^5) + t^4.85/(g1^8*g2^8*g3^8) + (g1^6*g2^6*t^5.19)/g3^8 + (2*g1^6*t^5.19)/(g2*g3) + (2*g2^6*t^5.19)/(g1*g3) + (g1^6*g3^6*t^5.19)/g2^8 + (2*g3^6*t^5.19)/(g1*g2) + (g2^6*g3^6*t^5.19)/g1^8 + (g1^3*g2^3*t^5.6)/g3^4 + (g1^3*g3^3*t^5.6)/g2^4 + (g2^3*g3^3*t^5.6)/g1^4 - 3*t^6. - (g1^7*t^6.)/g2^7 - (g2^7*t^6.)/g1^7 - (g1^7*t^6.)/g3^7 - (g2^7*t^6.)/g3^7 - (g3^7*t^6.)/g1^7 - (g3^7*t^6.)/g2^7 + t^6.06/(g1^3*g2^3*g3^24) + t^6.06/(g1^3*g2^10*g3^17) + t^6.06/(g1^10*g2^3*g3^17) + t^6.06/(g1^3*g2^17*g3^10) + t^6.06/(g1^10*g2^10*g3^10) + t^6.06/(g1^17*g2^3*g3^10) + t^6.06/(g1^3*g2^24*g3^3) + t^6.06/(g1^10*g2^17*g3^3) + t^6.06/(g1^17*g2^10*g3^3) + t^6.06/(g1^24*g2^3*g3^3) + g1^14*g2^14*t^6.34 + g1^14*g2^7*g3^7*t^6.34 + g1^7*g2^14*g3^7*t^6.34 + g1^14*g3^14*t^6.34 + g1^7*g2^7*g3^14*t^6.34 + g2^14*g3^14*t^6.34 + (g1^11*t^6.4)/(g2^3*g3^10) + (g1^4*g2^4*t^6.4)/g3^10 + (g2^11*t^6.4)/(g1^3*g3^10) + (g1^11*t^6.4)/(g2^10*g3^3) + (2*g1^4*t^6.4)/(g2^3*g3^3) + (2*g2^4*t^6.4)/(g1^3*g3^3) + (g2^11*t^6.4)/(g1^10*g3^3) + (g1^4*g3^4*t^6.4)/g2^10 + (2*g3^4*t^6.4)/(g1^3*g2^3) + (g2^4*g3^4*t^6.4)/g1^10 + (g3^11*t^6.4)/(g1^3*g2^10) + (g3^11*t^6.4)/(g1^10*g2^3) + t^6.47/(g1^6*g2^6*g3^20) + t^6.47/(g1^6*g2^13*g3^13) + t^6.47/(g1^13*g2^6*g3^13) + t^6.47/(g1^6*g2^20*g3^6) + t^6.47/(g1^13*g2^13*g3^6) + t^6.47/(g1^20*g2^6*g3^6) + (g1^8*t^6.81)/(g2^6*g3^6) + (g2^8*t^6.81)/(g1^6*g3^6) + (g3^8*t^6.81)/(g1^6*g2^6) + t^6.87/(g1^9*g2^9*g3^16) + t^6.87/(g1^9*g2^16*g3^9) + t^6.87/(g1^16*g2^9*g3^9) - g1^8*g2^8*g3^8*t^7.15 + (g1^5*g2^5*t^7.21)/g3^16 + (g1^5*t^7.21)/(g2^2*g3^9) + (g2^5*t^7.21)/(g1^2*g3^9) + (g1^5*t^7.21)/(g2^9*g3^2) + t^7.21/(g1^2*g2^2*g3^2) + (g2^5*t^7.21)/(g1^9*g3^2) + (g1^5*g3^5*t^7.21)/g2^16 + (g3^5*t^7.21)/(g1^2*g2^9) + (g3^5*t^7.21)/(g1^9*g2^2) + (g2^5*g3^5*t^7.21)/g1^16 + t^7.28/(g1^12*g2^12*g3^12) + (g1^19*g2^5*t^7.55)/g3^2 + (g1^12*g2^12*t^7.55)/g3^2 + (g1^5*g2^19*t^7.55)/g3^2 + (g1^19*g3^5*t^7.55)/g2^2 + 2*g1^12*g2^5*g3^5*t^7.55 + 2*g1^5*g2^12*g3^5*t^7.55 + (g2^19*g3^5*t^7.55)/g1^2 + (g1^12*g3^12*t^7.55)/g2^2 + 2*g1^5*g2^5*g3^12*t^7.55 + (g2^12*g3^12*t^7.55)/g1^2 + (g1^5*g3^19*t^7.55)/g2^2 + (g2^5*g3^19*t^7.55)/g1^2 + (g1^2*g2^2*t^7.62)/g3^12 + (2*g1^2*t^7.62)/(g2^5*g3^5) + (2*g2^2*t^7.62)/(g1^5*g3^5) + (g1^2*g3^2*t^7.62)/g2^12 + (2*g3^2*t^7.62)/(g1^5*g2^5) + (g2^2*g3^2*t^7.62)/g1^12 - g1^16*g2^2*g3^2*t^7.96 - g1^9*g2^9*g3^2*t^7.96 - g1^2*g2^16*g3^2*t^7.96 - g1^9*g2^2*g3^9*t^7.96 - g1^2*g2^9*g3^9*t^7.96 - g1^2*g2^2*g3^16*t^7.96 - (g1^6*t^8.02)/(g2*g3^15) - (g2^6*t^8.02)/(g1*g3^15) - (2*g1^6*t^8.02)/(g2^8*g3^8) - (4*t^8.02)/(g1*g2*g3^8) - (2*g2^6*t^8.02)/(g1^8*g3^8) - (g1^6*t^8.02)/(g2^15*g3) - (4*t^8.02)/(g1*g2^8*g3) - (4*t^8.02)/(g1^8*g2*g3) - (g2^6*t^8.02)/(g1^15*g3) - (g3^6*t^8.02)/(g1*g2^15) - (2*g3^6*t^8.02)/(g1^8*g2^8) - (g3^6*t^8.02)/(g1^15*g2) + t^8.08/(g1^4*g2^4*g3^32) + t^8.08/(g1^4*g2^11*g3^25) + t^8.08/(g1^11*g2^4*g3^25) + t^8.08/(g1^4*g2^18*g3^18) + t^8.08/(g1^11*g2^11*g3^18) + t^8.08/(g1^18*g2^4*g3^18) + t^8.08/(g1^4*g2^25*g3^11) + t^8.08/(g1^11*g2^18*g3^11) + t^8.08/(g1^18*g2^11*g3^11) + t^8.08/(g1^25*g2^4*g3^11) + t^8.08/(g1^4*g2^32*g3^4) + t^8.08/(g1^11*g2^25*g3^4) + t^8.08/(g1^18*g2^18*g3^4) + t^8.08/(g1^25*g2^11*g3^4) + t^8.08/(g1^32*g2^4*g3^4) + (g1^13*g2^13*t^8.36)/g3^8 + (g1^13*g2^6*t^8.36)/g3 + (g1^6*g2^13*t^8.36)/g3 + (g1^13*g3^6*t^8.36)/g2 + g1^6*g2^6*g3^6*t^8.36 + (g2^13*g3^6*t^8.36)/g1 + (g1^13*g3^13*t^8.36)/g2^8 + (g1^6*g3^13*t^8.36)/g2 + (g2^6*g3^13*t^8.36)/g1 + (g2^13*g3^13*t^8.36)/g1^8 + (g1^10*t^8.43)/(g2^4*g3^18) + (g1^3*g2^3*t^8.43)/g3^18 + (g2^10*t^8.43)/(g1^4*g3^18) + (g1^10*t^8.43)/(g2^11*g3^11) + (g1^3*t^8.43)/(g2^4*g3^11) + (g2^3*t^8.43)/(g1^4*g3^11) + (g2^10*t^8.43)/(g1^11*g3^11) + (g1^10*t^8.43)/(g2^18*g3^4) + (g1^3*t^8.43)/(g2^11*g3^4) + (g2^3*t^8.43)/(g1^11*g3^4) + (g2^10*t^8.43)/(g1^18*g3^4) + (g1^3*g3^3*t^8.43)/g2^18 + (g3^3*t^8.43)/(g1^4*g2^11) + (g3^3*t^8.43)/(g1^11*g2^4) + (g2^3*g3^3*t^8.43)/g1^18 + (g3^10*t^8.43)/(g1^4*g2^18) + (g3^10*t^8.43)/(g1^11*g2^11) + (g3^10*t^8.43)/(g1^18*g2^4) + t^8.49/(g1^7*g2^7*g3^28) + t^8.49/(g1^7*g2^14*g3^21) + t^8.49/(g1^14*g2^7*g3^21) + t^8.49/(g1^7*g2^21*g3^14) + t^8.49/(g1^14*g2^14*g3^14) + t^8.49/(g1^21*g2^7*g3^14) + t^8.49/(g1^7*g2^28*g3^7) + t^8.49/(g1^14*g2^21*g3^7) + t^8.49/(g1^21*g2^14*g3^7) + t^8.49/(g1^28*g2^7*g3^7) + (g1^24*t^8.77)/(g2^4*g3^4) + (g1^17*g2^3*t^8.77)/g3^4 + (2*g1^10*g2^10*t^8.77)/g3^4 + (g1^3*g2^17*t^8.77)/g3^4 + (g2^24*t^8.77)/(g1^4*g3^4) + (g1^17*g3^3*t^8.77)/g2^4 + g1^10*g2^3*g3^3*t^8.77 + g1^3*g2^10*g3^3*t^8.77 + (g2^17*g3^3*t^8.77)/g1^4 + (2*g1^10*g3^10*t^8.77)/g2^4 + g1^3*g2^3*g3^10*t^8.77 + (2*g2^10*g3^10*t^8.77)/g1^4 + (g1^3*g3^17*t^8.77)/g2^4 + (g2^3*g3^17*t^8.77)/g1^4 + (g3^24*t^8.77)/(g1^4*g2^4) + t^8.83/g1^14 + t^8.83/g2^14 + t^8.83/(g1^7*g2^7) + t^8.83/g3^14 + (g1^7*t^8.83)/(g2^7*g3^14) + (g2^7*t^8.83)/(g1^7*g3^14) + t^8.83/(g1^7*g3^7) + (g1^7*t^8.83)/(g2^14*g3^7) + t^8.83/(g2^7*g3^7) + (g2^7*t^8.83)/(g1^14*g3^7) + (g3^7*t^8.83)/(g1^7*g2^14) + (g3^7*t^8.83)/(g1^14*g2^7) + t^8.89/(g1^10*g2^10*g3^24) + t^8.89/(g1^10*g2^17*g3^17) + t^8.89/(g1^17*g2^10*g3^17) + t^8.89/(g1^10*g2^24*g3^10) + t^8.89/(g1^17*g2^17*g3^10) + t^8.89/(g1^24*g2^10*g3^10) - t^4.21/(g1^2*g2^2*g3^2*y) - t^6.23/(g1^3*g2^3*g3^10*y) - t^6.23/(g1^3*g2^10*g3^3*y) - t^6.23/(g1^10*g2^3*g3^3*y) - t^6.64/(g1^6*g2^6*g3^6*y) + t^7.04/(g1^2*g2^9*g3^9*y) + t^7.04/(g1^9*g2^2*g3^9*y) + t^7.04/(g1^9*g2^9*g3^2*y) + t^7.45/(g1^5*g2^5*g3^12*y) + t^7.45/(g1^5*g2^12*g3^5*y) + t^7.45/(g1^12*g2^5*g3^5*y) + (g1^2*g2^2*g3^2*t^7.79)/y + (g1^6*g2^6*t^8.19)/(g3^8*y) + (3*g1^6*t^8.19)/(g2*g3*y) + (3*g2^6*t^8.19)/(g1*g3*y) + (g1^6*g3^6*t^8.19)/(g2^8*y) + (3*g3^6*t^8.19)/(g1*g2*y) + (g2^6*g3^6*t^8.19)/(g1^8*y) - t^8.25/(g1^4*g2^4*g3^18*y) - t^8.25/(g1^4*g2^11*g3^11*y) - t^8.25/(g1^11*g2^4*g3^11*y) - t^8.25/(g1^4*g2^18*g3^4*y) - t^8.25/(g1^11*g2^11*g3^4*y) - t^8.25/(g1^18*g2^4*g3^4*y) + (g1^3*g2^3*t^8.6)/(g3^4*y) + (g1^3*g3^3*t^8.6)/(g2^4*y) + (g2^3*g3^3*t^8.6)/(g1^4*y) - t^8.66/(g1^7*g2^7*g3^14*y) - t^8.66/(g1^7*g2^14*g3^7*y) - t^8.66/(g1^14*g2^7*g3^7*y) - (t^4.21*y)/(g1^2*g2^2*g3^2) - (t^6.23*y)/(g1^3*g2^3*g3^10) - (t^6.23*y)/(g1^3*g2^10*g3^3) - (t^6.23*y)/(g1^10*g2^3*g3^3) - (t^6.64*y)/(g1^6*g2^6*g3^6) + (t^7.04*y)/(g1^2*g2^9*g3^9) + (t^7.04*y)/(g1^9*g2^2*g3^9) + (t^7.04*y)/(g1^9*g2^9*g3^2) + (t^7.45*y)/(g1^5*g2^5*g3^12) + (t^7.45*y)/(g1^5*g2^12*g3^5) + (t^7.45*y)/(g1^12*g2^5*g3^5) + g1^2*g2^2*g3^2*t^7.79*y + (g1^6*g2^6*t^8.19*y)/g3^8 + (3*g1^6*t^8.19*y)/(g2*g3) + (3*g2^6*t^8.19*y)/(g1*g3) + (g1^6*g3^6*t^8.19*y)/g2^8 + (3*g3^6*t^8.19*y)/(g1*g2) + (g2^6*g3^6*t^8.19*y)/g1^8 - (t^8.25*y)/(g1^4*g2^4*g3^18) - (t^8.25*y)/(g1^4*g2^11*g3^11) - (t^8.25*y)/(g1^11*g2^4*g3^11) - (t^8.25*y)/(g1^4*g2^18*g3^4) - (t^8.25*y)/(g1^11*g2^11*g3^4) - (t^8.25*y)/(g1^18*g2^4*g3^4) + (g1^3*g2^3*t^8.6*y)/g3^4 + (g1^3*g3^3*t^8.6*y)/g2^4 + (g2^3*g3^3*t^8.6*y)/g1^4 - (t^8.66*y)/(g1^7*g2^7*g3^14) - (t^8.66*y)/(g1^7*g2^14*g3^7) - (t^8.66*y)/(g1^14*g2^7*g3^7)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45983 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ M_3q_1\tilde{q}_2$ + $ M_1\phi_1^2$ 0.6293 0.8168 0.7704 [X:[], M:[0.9733, 0.7967, 0.7967], q:[0.7433, 0.2834], qb:[0.4599, 0.4599], phi:[0.5134]] 2*t^2.23 + 2*t^2.39 + t^2.76 + t^2.92 + t^3.08 + t^3.24 + 2*t^3.77 + 3*t^4.3 + 3*t^4.46 + 4*t^4.62 + 3*t^4.78 + 2*t^4.99 + 4*t^5.15 + 4*t^5.31 + 2*t^5.47 + t^5.52 + 2*t^5.63 + t^5.68 + t^5.84 - t^4.54/y - t^4.54*y detail
46026 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ M_3q_1\tilde{q}_2$ + $ M_3^2$ 0.6271 0.8146 0.7698 [X:[], M:[0.7084, 0.7084, 1.0], q:[0.7583, 0.5333], qb:[0.5333, 0.2417], phi:[0.4834]] 2*t^2.13 + 2*t^2.32 + 2*t^2.9 + t^3. + t^3.2 + 2*t^3.77 + 3*t^4.25 + 4*t^4.45 + 6*t^4.65 + 4*t^5.03 + 4*t^5.23 + 4*t^5.32 + 2*t^5.52 + 3*t^5.8 + 5*t^5.9 - 5*t^6. - t^4.45/y - t^4.45*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45868 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ 0.7148 0.8821 0.8104 [X:[], M:[0.6739, 0.6739], q:[0.7976, 0.5285], qb:[0.5285, 0.526], phi:[0.4048]] 2*t^2.02 + t^2.43 + 2*t^3.16 + t^3.17 + t^3.97 + 3*t^4.04 + t^4.37 + 2*t^4.38 + 3*t^4.39 + 2*t^4.45 + t^4.86 + 6*t^5.19 + 2*t^5.59 + t^5.6 - 5*t^6. - t^4.21/y - t^4.21*y detail