Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
45902 SU2adj1nf2 ${}\phi_{1}^{4}$ + ${ }M_{1}q_{1}q_{2}$ + ${ }q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ 0.6952 0.8564 0.8117 [M:[0.9738, 0.9466], q:[0.5267, 0.4995], qb:[0.5267, 0.4471], phi:[0.5]] [M:[[1, 1], [-2, 0]], q:[[1, 0], [-2, -1]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ ${}$ -3 2*t^2.84 + 3*t^2.921 + t^3. + t^3.079 + t^4.182 + t^4.34 + 2*t^4.421 + t^4.497 + 2*t^4.579 + 3*t^4.66 + 3*t^5.679 + 4*t^5.761 + 2*t^5.84 + 5*t^5.843 + 3*t^5.921 - 3*t^6. + t^6.079 - 2*t^6.082 - 2*t^6.239 + 2*t^7.022 + 3*t^7.104 + 2*t^7.179 + 4*t^7.261 + 2*t^7.337 + 4*t^7.343 + 4*t^7.418 + 4*t^7.5 + t^7.576 + 5*t^7.582 - t^7.739 + t^8.365 + 4*t^8.519 + t^8.522 + 5*t^8.601 + 2*t^8.604 + 4*t^8.679 + 4*t^8.682 - t^8.758 + 6*t^8.761 + 7*t^8.764 + t^8.837 - 8*t^8.84 + 8*t^8.843 + 2*t^8.918 - 13*t^8.921 + t^8.994 - 2*t^8.997 - t^4.5/y - t^7.34/y - t^7.421/y + t^7.579/y + t^7.66/y + t^8.679/y + (6*t^8.761)/y + (2*t^8.84)/y + (3*t^8.843)/y + (2*t^8.918)/y + (3*t^8.921)/y - t^4.5*y - t^7.34*y - t^7.421*y + t^7.579*y + t^7.66*y + t^8.679*y + 6*t^8.761*y + 2*t^8.84*y + 3*t^8.843*y + 2*t^8.918*y + 3*t^8.921*y (2*t^2.84)/g1^2 + 3*g1*g2*t^2.921 + t^3. + t^3.079/(g1*g2) + g2^2*t^4.182 + t^4.34/g1^2 + 2*g1*g2*t^4.421 + t^4.497/(g1^4*g2^2) + (2*t^4.579)/(g1*g2) + 3*g1^2*t^4.66 + (3*t^5.679)/g1^4 + (4*g2*t^5.761)/g1 + (2*t^5.84)/g1^2 + 5*g1^2*g2^2*t^5.843 + 3*g1*g2*t^5.921 - 3*t^6. + t^6.079/(g1*g2) - 2*g1^3*g2*t^6.082 - (2*g1*t^6.239)/g2 + (2*g2^2*t^7.022)/g1^2 + 3*g1*g2^3*t^7.104 + (2*t^7.179)/g1^4 + (4*g2*t^7.261)/g1 + (2*t^7.337)/(g1^6*g2^2) + 4*g1^2*g2^2*t^7.343 + (4*t^7.418)/(g1^3*g2) + 4*t^7.5 + t^7.576/(g1^5*g2^3) + 5*g1^3*g2*t^7.582 - (g1*t^7.739)/g2 + g2^4*t^8.365 + (4*t^8.519)/g1^6 + (g2^2*t^8.522)/g1^2 + (5*g2*t^8.601)/g1^3 + 2*g1*g2^3*t^8.604 + (4*t^8.679)/g1^4 + 4*g2^2*t^8.682 - t^8.758/(g1^5*g2) + (6*g2*t^8.761)/g1 + 7*g1^3*g2^3*t^8.764 + t^8.837/(g1^6*g2^2) - (8*t^8.84)/g1^2 + 8*g1^2*g2^2*t^8.843 + (2*t^8.918)/(g1^3*g2) - 13*g1*g2*t^8.921 + t^8.994/(g1^8*g2^4) - (2*t^8.997)/(g1^4*g2^2) - t^4.5/y - t^7.34/(g1^2*y) - (g1*g2*t^7.421)/y + t^7.579/(g1*g2*y) + (g1^2*t^7.66)/y + t^8.679/(g1^4*y) + (6*g2*t^8.761)/(g1*y) + (2*t^8.84)/(g1^2*y) + (3*g1^2*g2^2*t^8.843)/y + (2*t^8.918)/(g1^3*g2*y) + (3*g1*g2*t^8.921)/y - t^4.5*y - (t^7.34*y)/g1^2 - g1*g2*t^7.421*y + (t^7.579*y)/(g1*g2) + g1^2*t^7.66*y + (t^8.679*y)/g1^4 + (6*g2*t^8.761*y)/g1 + (2*t^8.84*y)/g1^2 + 3*g1^2*g2^2*t^8.843*y + (2*t^8.918*y)/(g1^3*g2) + 3*g1*g2*t^8.921*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45839 SU2adj1nf2 ${}\phi_{1}^{4}$ + ${ }M_{1}q_{1}q_{2}$ + ${ }q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$ 0.6927 0.8507 0.8143 [M:[0.9724], q:[0.4996, 0.528], qb:[0.4996, 0.4728], phi:[0.5]] 3*t^2.917 + t^2.998 + t^3. + t^3.002 + t^3.083 + t^4.337 + 2*t^4.417 + 3*t^4.498 + t^4.502 + 2*t^4.583 + t^4.668 + 5*t^5.834 + t^5.915 + 3*t^5.917 + t^5.919 + t^5.995 + t^5.998 - 2*t^6. - t^4.5/y - t^4.5*y detail