Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
4590 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{2}M_{7}$ + ${ }M_{5}M_{8}$ | 0.697 | 0.857 | 0.8133 | [M:[1.0108, 0.9676, 1.0324, 0.9461, 1.0539, 0.9245, 1.0324, 0.9461], q:[0.5054, 0.4838], qb:[0.4622, 0.5701], phi:[0.4946]] | [M:[[2], [-6], [6], [-10], [10], [-14], [6], [-10]], q:[[1], [-3]], qb:[[-7], [13]], phi:[[-1]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{6}$, ${ }M_{4}$, ${ }M_{8}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }M_{7}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{6}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{6}M_{8}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{8}$, ${ }M_{8}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{8}\phi_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{6}$, ${ }M_{6}M_{7}$, ${ }M_{1}M_{8}$, ${ }M_{3}M_{4}$, ${ }M_{4}M_{7}$, ${ }M_{3}M_{8}$, ${ }M_{7}M_{8}$, ${ }\phi_{1}^{4}$ | ${}$ | -3 | t^2.773 + 2*t^2.838 + t^2.968 + t^3.032 + 2*t^3.097 + t^4.257 + t^4.322 + 2*t^4.387 + t^4.451 + t^4.516 + t^4.581 + t^4.646 + t^4.71 + t^4.905 + t^5.547 + 2*t^5.612 + 2*t^5.676 + 2*t^5.806 + 3*t^5.871 + 3*t^5.935 - 3*t^6. + t^6.129 + 2*t^6.194 - t^6.259 - t^6.324 + t^7.031 + 3*t^7.095 + 3*t^7.16 + 4*t^7.225 + 2*t^7.29 + 5*t^7.354 + 3*t^7.419 + 3*t^7.484 + 2*t^7.678 + 2*t^7.743 + 2*t^8.002 + t^8.32 + 2*t^8.385 + 2*t^8.45 + 3*t^8.514 + 2*t^8.579 + 6*t^8.644 + 4*t^8.709 + t^8.773 - 5*t^8.838 + 2*t^8.903 + 2*t^8.968 - t^4.484/y - t^7.257/y - t^7.322/y + t^7.387/y - t^7.581/y + t^7.646/y + t^7.71/y + (2*t^8.612)/y + t^8.676/y + t^8.741/y + (3*t^8.806)/y + (4*t^8.871)/y + (4*t^8.935)/y - t^4.484*y - t^7.257*y - t^7.322*y + t^7.387*y - t^7.581*y + t^7.646*y + t^7.71*y + 2*t^8.612*y + t^8.676*y + t^8.741*y + 3*t^8.806*y + 4*t^8.871*y + 4*t^8.935*y | t^2.773/g1^14 + (2*t^2.838)/g1^10 + t^2.968/g1^2 + g1^2*t^3.032 + 2*g1^6*t^3.097 + t^4.257/g1^15 + t^4.322/g1^11 + (2*t^4.387)/g1^7 + t^4.451/g1^3 + g1*t^4.516 + g1^5*t^4.581 + g1^9*t^4.646 + g1^13*t^4.71 + g1^25*t^4.905 + t^5.547/g1^28 + (2*t^5.612)/g1^24 + (2*t^5.676)/g1^20 + (2*t^5.806)/g1^12 + (3*t^5.871)/g1^8 + (3*t^5.935)/g1^4 - 3*t^6. + g1^8*t^6.129 + 2*g1^12*t^6.194 - g1^16*t^6.259 - g1^20*t^6.324 + t^7.031/g1^29 + (3*t^7.095)/g1^25 + (3*t^7.16)/g1^21 + (4*t^7.225)/g1^17 + (2*t^7.29)/g1^13 + (5*t^7.354)/g1^9 + (3*t^7.419)/g1^5 + (3*t^7.484)/g1 + 2*g1^11*t^7.678 + 2*g1^15*t^7.743 + 2*g1^31*t^8.002 + t^8.32/g1^42 + (2*t^8.385)/g1^38 + (2*t^8.45)/g1^34 + (3*t^8.514)/g1^30 + (2*t^8.579)/g1^26 + (6*t^8.644)/g1^22 + (4*t^8.709)/g1^18 + t^8.773/g1^14 - (5*t^8.838)/g1^10 + (2*t^8.903)/g1^6 + (2*t^8.968)/g1^2 - t^4.484/(g1*y) - t^7.257/(g1^15*y) - t^7.322/(g1^11*y) + t^7.387/(g1^7*y) - (g1^5*t^7.581)/y + (g1^9*t^7.646)/y + (g1^13*t^7.71)/y + (2*t^8.612)/(g1^24*y) + t^8.676/(g1^20*y) + t^8.741/(g1^16*y) + (3*t^8.806)/(g1^12*y) + (4*t^8.871)/(g1^8*y) + (4*t^8.935)/(g1^4*y) - (t^4.484*y)/g1 - (t^7.257*y)/g1^15 - (t^7.322*y)/g1^11 + (t^7.387*y)/g1^7 - g1^5*t^7.581*y + g1^9*t^7.646*y + g1^13*t^7.71*y + (2*t^8.612*y)/g1^24 + (t^8.676*y)/g1^20 + (t^8.741*y)/g1^16 + (3*t^8.806*y)/g1^12 + (4*t^8.871*y)/g1^8 + (4*t^8.935*y)/g1^4 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
2536 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{2}M_{7}$ | 0.6931 | 0.8496 | 0.8159 | [M:[1.006, 0.9821, 1.0179, 0.9701, 1.0299, 0.9582, 1.0179], q:[0.503, 0.491], qb:[0.4791, 0.5388], phi:[0.497]] | t^2.875 + t^2.91 + t^2.982 + t^3.018 + 2*t^3.054 + t^3.09 + t^4.366 + t^4.401 + 2*t^4.437 + t^4.473 + t^4.509 + t^4.545 + t^4.581 + t^4.617 + t^4.724 + t^5.749 + t^5.785 + t^5.892 + 2*t^5.928 + 2*t^5.964 - 2*t^6. - t^4.491/y - t^4.491*y | detail |