Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
45871 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1\tilde{q}_1$ 0.6484 0.7953 0.8152 [X:[], M:[0.7026, 0.7026], q:[0.8244, 0.4731], qb:[0.8244, 0.4731], phi:[0.3513]] [X:[], M:[[-4, 1, -1], [0, -1, -3]], q:[[1, -1, 1], [3, 0, 0]], qb:[[0, 1, 0], [0, 0, 3]], phi:[[-1, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ \phi_1^2$, $ M_1$, $ q_2\tilde{q}_2$, $ q_2\tilde{q}_1$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_2$, $ q_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_2^2$, $ M_2\phi_1^2$, $ M_1M_2$, $ \phi_1^4$, $ M_1\phi_1^2$, $ M_1^2$, $ \phi_1q_1q_2$, $ q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$ $\phi_1q_1^2$, $ M_2\phi_1q_2^2$, $ \phi_1^3q_2^2$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1^2q_1\tilde{q}_2$, $ \phi_1^3q_2\tilde{q}_2$, $ M_1\phi_1\tilde{q}_2^2$, $ \phi_1^3\tilde{q}_2^2$ 6 3*t^2.11 + t^2.84 + 5*t^3.89 + 6*t^4.22 + 4*t^4.95 + t^5.68 + 6*t^6. + 10*t^6.32 + 5*t^6.73 + t^7.05 + 10*t^7.78 + 4*t^8.11 + 15*t^8.43 + t^8.52 + 3*t^8.84 - t^4.05/y - (3*t^6.16)/y + (3*t^7.22)/y + (6*t^7.95)/y - (6*t^8.27)/y - t^4.05*y - 3*t^6.16*y + 3*t^7.22*y + 6*t^7.95*y - 6*t^8.27*y t^2.11/(g2*g3^3) + t^2.11/(g1^2*g3^2) + (g2*t^2.11)/(g1^4*g3) + g1^3*g3^3*t^2.84 + g1^3*g2*t^3.89 + (g1^5*t^3.89)/g3 + g1^2*g3^2*t^3.89 + (g1*g3^4*t^3.89)/g2 + (g3^5*t^3.89)/g1 + t^4.22/(g2^2*g3^6) + t^4.22/(g1^2*g2*g3^5) + (2*t^4.22)/(g1^4*g3^4) + (g2*t^4.22)/(g1^6*g3^3) + (g2^2*t^4.22)/(g1^8*g3^2) + (g1^3*t^4.95)/g2 + 2*g1*g3*t^4.95 + (g2*g3^2*t^4.95)/g1 + g1^6*g3^6*t^5.68 - 2*t^6. + (g1^5*t^6.)/(g2*g3^4) + (g1^3*t^6.)/g3^3 + (g1*g2*t^6.)/g3^2 + (g2^2*t^6.)/(g1*g3) + (g1*g3*t^6.)/g2^2 + (g3^2*t^6.)/(g1*g2) + (g3^3*t^6.)/g1^3 + (g2*g3^4*t^6.)/g1^5 + t^6.32/(g2^3*g3^9) + t^6.32/(g1^2*g2^2*g3^8) + (2*t^6.32)/(g1^4*g2*g3^7) + (2*t^6.32)/(g1^6*g3^6) + (2*g2*t^6.32)/(g1^8*g3^5) + (g2^2*t^6.32)/(g1^10*g3^4) + (g2^3*t^6.32)/(g1^12*g3^3) + g1^8*g3^2*t^6.73 + g1^6*g2*g3^3*t^6.73 + g1^5*g3^5*t^6.73 + (g1^4*g3^7*t^6.73)/g2 + g1^2*g3^8*t^6.73 + (g2*t^7.05)/g1^3 - (g1^2*t^7.05)/g3^4 + (g1^3*t^7.05)/(g2^2*g3^3) - (g2*t^7.05)/g3^3 + (g1*t^7.05)/(g2*g3^2) + t^7.05/(g1*g3) - (g3*t^7.05)/(g1^2*g2) + (g2^2*g3*t^7.05)/g1^5 - (g3^2*t^7.05)/g1^4 + g1^6*g2^2*t^7.78 + (g1^10*t^7.78)/g3^2 + (g1^8*g2*t^7.78)/g3 + (g1^6*g3^3*t^7.78)/g2 + 2*g1^4*g3^4*t^7.78 + g1^2*g2*g3^5*t^7.78 + (g1^2*g3^8*t^7.78)/g2^2 + (g3^9*t^7.78)/g2 + (g3^10*t^7.78)/g1^2 + t^8.11/(g1^3*g2) + (g1^5*t^8.11)/(g2^2*g3^7) + (g1^3*t^8.11)/(g2*g3^6) + (g1*t^8.11)/g3^5 + (g2*t^8.11)/(g1*g3^4) - (3*t^8.11)/(g2*g3^3) + (g2^2*t^8.11)/(g1^3*g3^3) - (2*t^8.11)/(g1^2*g3^2) + (g1*t^8.11)/(g2^3*g3^2) + (g2^3*t^8.11)/(g1^5*g3^2) + t^8.11/(g1*g2^2*g3) - (3*g2*t^8.11)/(g1^4*g3) + (g3*t^8.11)/g1^5 + (g2*g3^2*t^8.11)/g1^7 + (g2^2*g3^3*t^8.11)/g1^9 + t^8.43/(g2^4*g3^12) + t^8.43/(g1^2*g2^3*g3^11) + (2*t^8.43)/(g1^4*g2^2*g3^10) + (2*t^8.43)/(g1^6*g2*g3^9) + (3*t^8.43)/(g1^8*g3^8) + (2*g2*t^8.43)/(g1^10*g3^7) + (2*g2^2*t^8.43)/(g1^12*g3^6) + (g2^3*t^8.43)/(g1^14*g3^5) + (g2^4*t^8.43)/(g1^16*g3^4) + g1^9*g3^9*t^8.52 + g1^6*t^8.84 + (g1^8*t^8.84)/(g2*g3) + g1^4*g2*g3*t^8.84 - (g1^5*g3^2*t^8.84)/g2 + g1^2*g2^2*g3^2*t^8.84 - 3*g1^3*g3^3*t^8.84 + (g1^4*g3^4*t^8.84)/g2^2 - g1*g2*g3^4*t^8.84 + (g1^2*g3^5*t^8.84)/g2 + g3^6*t^8.84 + (g2*g3^7*t^8.84)/g1^2 - t^4.05/(g1*g3*y) - t^6.16/(g1*g2*g3^4*y) - t^6.16/(g1^3*g3^3*y) - (g2*t^6.16)/(g1^5*g3^2*y) + t^7.22/(g1^2*g2*g3^5*y) + t^7.22/(g1^4*g3^4*y) + (g2*t^7.22)/(g1^6*g3^3*y) + (2*g1^3*t^7.95)/(g2*y) + (2*g1*g3*t^7.95)/y + (2*g2*g3^2*t^7.95)/(g1*y) - t^8.27/(g1*g2^2*g3^7*y) - t^8.27/(g1^3*g2*g3^6*y) - (2*t^8.27)/(g1^5*g3^5*y) - (g2*t^8.27)/(g1^7*g3^4*y) - (g2^2*t^8.27)/(g1^9*g3^3*y) - (t^4.05*y)/(g1*g3) - (t^6.16*y)/(g1*g2*g3^4) - (t^6.16*y)/(g1^3*g3^3) - (g2*t^6.16*y)/(g1^5*g3^2) + (t^7.22*y)/(g1^2*g2*g3^5) + (t^7.22*y)/(g1^4*g3^4) + (g2*t^7.22*y)/(g1^6*g3^3) + (2*g1^3*t^7.95*y)/g2 + 2*g1*g3*t^7.95*y + (2*g2*g3^2*t^7.95*y)/g1 - (t^8.27*y)/(g1*g2^2*g3^7) - (t^8.27*y)/(g1^3*g2*g3^6) - (2*t^8.27*y)/(g1^5*g3^5) - (g2*t^8.27*y)/(g1^7*g3^4) - (g2^2*t^8.27*y)/(g1^9*g3^3)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ 0.7382 0.8885 0.8308 [X:[], M:[0.8108, 0.8108], q:[0.5946, 0.5946], qb:[0.5946, 0.5946], phi:[0.4054]] 3*t^2.43 + 4*t^3.57 + 10*t^4.78 + 6*t^4.86 - 4*t^6. - t^4.22/y - t^4.22*y detail