Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
4587 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{5}M_{6}$ + ${ }M_{1}M_{7}$ + ${ }M_{8}q_{1}\tilde{q}_{2}$ | 0.7018 | 0.8667 | 0.8097 | [M:[1.0146, 0.9561, 1.0439, 0.9269, 1.0731, 0.9269, 0.9854, 0.8976], q:[0.5073, 0.4781], qb:[0.4488, 0.5951], phi:[0.4927]] | [M:[[2], [-6], [6], [-10], [10], [-10], [-2], [-14]], q:[[1], [-3]], qb:[[-7], [13]], phi:[[-1]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{8}$, ${ }M_{4}$, ${ }M_{6}$, ${ }M_{2}$, ${ }M_{7}$, ${ }\phi_{1}^{2}$, ${ }M_{3}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{8}^{2}$, ${ }M_{4}M_{8}$, ${ }M_{6}M_{8}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{2}M_{8}$, ${ }M_{2}M_{4}$, ${ }M_{2}M_{6}$, ${ }M_{7}M_{8}$, ${ }M_{8}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{4}M_{7}$, ${ }M_{6}M_{7}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{2}M_{7}$, ${ }M_{3}M_{8}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{3}M_{6}$, ${ }M_{7}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$ | ${}$ | -3 | t^2.693 + 2*t^2.781 + t^2.868 + 2*t^2.956 + t^3.132 + t^4.171 + t^4.259 + 2*t^4.346 + t^4.434 + t^4.522 + t^4.61 + t^4.697 + t^4.785 + t^5.048 + t^5.386 + 2*t^5.474 + 3*t^5.561 + 3*t^5.649 + 4*t^5.737 + 2*t^5.825 + 3*t^5.912 - 3*t^6. - t^6.088 - t^6.175 - t^6.351 - t^6.439 + t^6.864 + 3*t^6.952 + 4*t^7.039 + 6*t^7.127 + 4*t^7.215 + 6*t^7.303 + 2*t^7.39 + 2*t^7.478 + t^7.741 + t^8.005 + t^8.079 - t^8.092 + 2*t^8.166 + t^8.18 + 3*t^8.254 + 6*t^8.342 + 6*t^8.43 + 8*t^8.517 + 5*t^8.605 + 4*t^8.693 - 4*t^8.781 - 2*t^8.868 - 7*t^8.956 - t^4.478/y - t^7.171/y - t^7.259/y - t^7.434/y + t^7.522/y + t^7.697/y + t^7.785/y + (2*t^8.474)/y + (2*t^8.561)/y + (4*t^8.649)/y + (4*t^8.737)/y + (3*t^8.825)/y + (3*t^8.912)/y - t^4.478*y - t^7.171*y - t^7.259*y - t^7.434*y + t^7.522*y + t^7.697*y + t^7.785*y + 2*t^8.474*y + 2*t^8.561*y + 4*t^8.649*y + 4*t^8.737*y + 3*t^8.825*y + 3*t^8.912*y | t^2.693/g1^14 + (2*t^2.781)/g1^10 + t^2.868/g1^6 + (2*t^2.956)/g1^2 + g1^6*t^3.132 + t^4.171/g1^15 + t^4.259/g1^11 + (2*t^4.346)/g1^7 + t^4.434/g1^3 + g1*t^4.522 + g1^5*t^4.61 + g1^9*t^4.697 + g1^13*t^4.785 + g1^25*t^5.048 + t^5.386/g1^28 + (2*t^5.474)/g1^24 + (3*t^5.561)/g1^20 + (3*t^5.649)/g1^16 + (4*t^5.737)/g1^12 + (2*t^5.825)/g1^8 + (3*t^5.912)/g1^4 - 3*t^6. - g1^4*t^6.088 - g1^8*t^6.175 - g1^16*t^6.351 - g1^20*t^6.439 + t^6.864/g1^29 + (3*t^6.952)/g1^25 + (4*t^7.039)/g1^21 + (6*t^7.127)/g1^17 + (4*t^7.215)/g1^13 + (6*t^7.303)/g1^9 + (2*t^7.39)/g1^5 + (2*t^7.478)/g1 + g1^11*t^7.741 + g1^23*t^8.005 + t^8.079/g1^42 - g1^27*t^8.092 + (2*t^8.166)/g1^38 + g1^31*t^8.18 + (3*t^8.254)/g1^34 + (6*t^8.342)/g1^30 + (6*t^8.43)/g1^26 + (8*t^8.517)/g1^22 + (5*t^8.605)/g1^18 + (4*t^8.693)/g1^14 - (4*t^8.781)/g1^10 - (2*t^8.868)/g1^6 - (7*t^8.956)/g1^2 - t^4.478/(g1*y) - t^7.171/(g1^15*y) - t^7.259/(g1^11*y) - t^7.434/(g1^3*y) + (g1*t^7.522)/y + (g1^9*t^7.697)/y + (g1^13*t^7.785)/y + (2*t^8.474)/(g1^24*y) + (2*t^8.561)/(g1^20*y) + (4*t^8.649)/(g1^16*y) + (4*t^8.737)/(g1^12*y) + (3*t^8.825)/(g1^8*y) + (3*t^8.912)/(g1^4*y) - (t^4.478*y)/g1 - (t^7.171*y)/g1^15 - (t^7.259*y)/g1^11 - (t^7.434*y)/g1^3 + g1*t^7.522*y + g1^9*t^7.697*y + g1^13*t^7.785*y + (2*t^8.474*y)/g1^24 + (2*t^8.561*y)/g1^20 + (4*t^8.649*y)/g1^16 + (4*t^8.737*y)/g1^12 + (3*t^8.825*y)/g1^8 + (3*t^8.912*y)/g1^4 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
2530 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{5}M_{6}$ + ${ }M_{1}M_{7}$ | 0.6944 | 0.852 | 0.8151 | [M:[1.0081, 0.9758, 1.0242, 0.9597, 1.0403, 0.9597, 0.9919], q:[0.504, 0.4879], qb:[0.4718, 0.5524], phi:[0.496]] | 2*t^2.879 + t^2.928 + 2*t^2.976 + t^3.072 + t^3.169 + t^4.319 + t^4.367 + 2*t^4.415 + t^4.464 + t^4.512 + t^4.56 + t^4.609 + t^4.657 + t^4.802 + 2*t^5.758 + t^5.807 + 4*t^5.855 + t^5.903 + 3*t^5.952 - 3*t^6. - t^4.488/y - t^4.488*y | detail |