Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
45850 | SU2adj1nf2 | $M_1\phi_1^2$ + $ M_2q_1q_2$ + $ M_3\tilde{q}_1\tilde{q}_2$ | 0.7232 | 0.8641 | 0.8369 | [X:[], M:[1.163, 0.837, 0.837], q:[0.5815, 0.5815], qb:[0.5815, 0.5815], phi:[0.4185]] | [X:[], M:[[2, 2, 2, 2], [-4, -4, 0, 0], [0, 0, -4, -4]], q:[[4, 0, 0, 0], [0, 4, 0, 0]], qb:[[0, 0, 4, 0], [0, 0, 0, 4]], phi:[[-1, -1, -1, -1]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_2$, $ M_3$, $ q_1\tilde{q}_1$, $ q_2\tilde{q}_1$, $ M_1$, $ q_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ \phi_1q_1^2$, $ \phi_1q_1q_2$, $ \phi_1q_2^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_2^2$, $ M_3^2$, $ M_2M_3$ | $M_1M_2$, $ M_1M_3$ | -6 | 2*t^2.51 + 5*t^3.49 + 10*t^4.74 + 3*t^5.02 - 6*t^6. + 14*t^6.98 + 5*t^7.26 + 4*t^7.53 + 25*t^8.23 - 7*t^8.51 - t^4.26/y - (2*t^6.77)/y + (2*t^7.74)/y + t^8.02/y - t^4.26*y - 2*t^6.77*y + 2*t^7.74*y + t^8.02*y | t^2.51/(g1^4*g2^4) + t^2.51/(g3^4*g4^4) + g1^4*g3^4*t^3.49 + g2^4*g3^4*t^3.49 + g1^2*g2^2*g3^2*g4^2*t^3.49 + g1^4*g4^4*t^3.49 + g2^4*g4^4*t^3.49 + (g1^7*t^4.74)/(g2*g3*g4) + (g1^3*g2^3*t^4.74)/(g3*g4) + (g2^7*t^4.74)/(g1*g3*g4) + (g1^3*g3^3*t^4.74)/(g2*g4) + (g2^3*g3^3*t^4.74)/(g1*g4) + (g3^7*t^4.74)/(g1*g2*g4) + (g1^3*g4^3*t^4.74)/(g2*g3) + (g2^3*g4^3*t^4.74)/(g1*g3) + (g3^3*g4^3*t^4.74)/(g1*g2) + (g4^7*t^4.74)/(g1*g2*g3) + t^5.02/(g1^8*g2^8) + t^5.02/(g3^8*g4^8) + t^5.02/(g1^4*g2^4*g3^4*g4^4) - 4*t^6. - (g1^4*t^6.)/g2^4 - (g2^4*t^6.)/g1^4 - (g3^4*t^6.)/g4^4 + (g1^2*g2^2*t^6.)/(g3^2*g4^2) + (g3^2*g4^2*t^6.)/(g1^2*g2^2) - (g4^4*t^6.)/g3^4 + g1^8*g3^8*t^6.98 + g1^4*g2^4*g3^8*t^6.98 + g2^8*g3^8*t^6.98 + g1^6*g2^2*g3^6*g4^2*t^6.98 + g1^2*g2^6*g3^6*g4^2*t^6.98 + g1^8*g3^4*g4^4*t^6.98 + 2*g1^4*g2^4*g3^4*g4^4*t^6.98 + g2^8*g3^4*g4^4*t^6.98 + g1^6*g2^2*g3^2*g4^6*t^6.98 + g1^2*g2^6*g3^2*g4^6*t^6.98 + g1^8*g4^8*t^6.98 + g1^4*g2^4*g4^8*t^6.98 + g2^8*g4^8*t^6.98 + (g1^7*t^7.26)/(g2*g3^5*g4^5) + (g1^3*g2^3*t^7.26)/(g3^5*g4^5) + (g2^7*t^7.26)/(g1*g3^5*g4^5) - t^7.26/(g1*g2*g3*g4) + (g3^7*t^7.26)/(g1^5*g2^5*g4) + (g3^3*g4^3*t^7.26)/(g1^5*g2^5) + (g4^7*t^7.26)/(g1^5*g2^5*g3) + t^7.53/(g1^12*g2^12) + t^7.53/(g3^12*g4^12) + t^7.53/(g1^4*g2^4*g3^8*g4^8) + t^7.53/(g1^8*g2^8*g3^4*g4^4) + (g1^11*g3^3*t^8.23)/(g2*g4) + (g1^7*g2^3*g3^3*t^8.23)/g4 + (g1^3*g2^7*g3^3*t^8.23)/g4 + (g2^11*g3^3*t^8.23)/(g1*g4) + (g1^7*g3^7*t^8.23)/(g2*g4) + (g1^3*g2^3*g3^7*t^8.23)/g4 + (g2^7*g3^7*t^8.23)/(g1*g4) + (g1^3*g3^11*t^8.23)/(g2*g4) + (g2^3*g3^11*t^8.23)/(g1*g4) + (g1^11*g4^3*t^8.23)/(g2*g3) + (g1^7*g2^3*g4^3*t^8.23)/g3 + (g1^3*g2^7*g4^3*t^8.23)/g3 + (g2^11*g4^3*t^8.23)/(g1*g3) + (g1^7*g3^3*g4^3*t^8.23)/g2 + g1^3*g2^3*g3^3*g4^3*t^8.23 + (g2^7*g3^3*g4^3*t^8.23)/g1 + (g1^3*g3^7*g4^3*t^8.23)/g2 + (g2^3*g3^7*g4^3*t^8.23)/g1 + (g1^7*g4^7*t^8.23)/(g2*g3) + (g1^3*g2^3*g4^7*t^8.23)/g3 + (g2^7*g4^7*t^8.23)/(g1*g3) + (g1^3*g3^3*g4^7*t^8.23)/g2 + (g2^3*g3^3*g4^7*t^8.23)/g1 + (g1^3*g4^11*t^8.23)/(g2*g3) + (g2^3*g4^11*t^8.23)/(g1*g3) - (3*t^8.51)/(g1^4*g2^4) + (g1^2*g2^2*t^8.51)/(g3^6*g4^6) - (3*t^8.51)/(g3^4*g4^4) - (g1^4*t^8.51)/(g2^4*g3^4*g4^4) - (g2^4*t^8.51)/(g1^4*g3^4*g4^4) - (g3^4*t^8.51)/(g1^4*g2^4*g4^4) + t^8.51/(g1^2*g2^2*g3^2*g4^2) + (g3^2*g4^2*t^8.51)/(g1^6*g2^6) - (g4^4*t^8.51)/(g1^4*g2^4*g3^4) - t^4.26/(g1*g2*g3*g4*y) - t^6.77/(g1*g2*g3^5*g4^5*y) - t^6.77/(g1^5*g2^5*g3*g4*y) + (g1^3*g2^3*t^7.74)/(g3*g4*y) + (g3^3*g4^3*t^7.74)/(g1*g2*y) + t^8.02/(g1^4*g2^4*g3^4*g4^4*y) - (t^4.26*y)/(g1*g2*g3*g4) - (t^6.77*y)/(g1*g2*g3^5*g4^5) - (t^6.77*y)/(g1^5*g2^5*g3*g4) + (g1^3*g2^3*t^7.74*y)/(g3*g4) + (g3^3*g4^3*t^7.74*y)/(g1*g2) + (t^8.02*y)/(g1^4*g2^4*g3^4*g4^4) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55797 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_1\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_3^2$ + $ q_3\tilde{q}_3$ | 0.7232 | 0.8641 | 0.8369 | [X:[], M:[0.837], q:[0.5815, 0.5815, 0.7908], qb:[0.5815, 0.5815, 1.2092], phi:[0.4185]] | 2*t^2.51 + 5*t^3.49 + 10*t^4.74 + 3*t^5.02 - 6*t^6. - t^4.26/y - t^4.26*y | detail |
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
45826 | SU2adj1nf2 | $M_1\phi_1^2$ + $ M_2q_1q_2$ | 0.7121 | 0.8517 | 0.8362 | [X:[], M:[1.1256, 0.8278], q:[0.5861, 0.5861], qb:[0.5395, 0.5395], phi:[0.4372]] | t^2.48 + t^3.24 + 5*t^3.38 + 3*t^4.55 + 4*t^4.69 + 3*t^4.83 + t^4.97 + t^5.72 + t^5.86 - 8*t^6. - t^4.31/y - t^4.31*y | detail |