Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
45837 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1\tilde{q}_1\tilde{q}_2$ + $ \phi_1^2X_1$ 0.5833 0.6667 0.875 [X:[1.3333], M:[1.0], q:[0.8333, 0.8333], qb:[0.5, 0.5], phi:[0.3333]] [X:[[0, 0, 2]], M:[[0, 0, -3]], q:[[-1, 0, 1], [1, 0, 0]], qb:[[0, -1, 3], [0, 1, 0]], phi:[[0, 0, -1]]] 3 {a: 7/12, c: 2/3, X1: 4/3, M1: 1, q1: 5/6, q2: 5/6, qb1: 1/2, qb2: 1/2, phi1: 1/3}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ X_1$, $ q_2\tilde{q}_1$, $ q_1\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ q_1q_2$ $M_1^2$ -8 t^3. + 8*t^4. + t^5. - 8*t^6. + 29*t^8. - t^4./y - t^4.*y t^3./g3^3 + g1*g2*t^4. + (g2^2*t^4.)/g3 + (g2*g3*t^4.)/g1 + 2*g3^2*t^4. + (g1*g3^3*t^4.)/g2 + (g3^4*t^4.)/(g1*g2) + (g3^5*t^4.)/g2^2 + g3*t^5. - 3*t^6. + t^6./g3^6 - (g2^2*t^6.)/g3^3 - (g1*g2*t^6.)/g3^2 - (g2*t^6.)/(g1*g3) - (g1*g3*t^6.)/g2 - (g3^2*t^6.)/(g1*g2) - (g3^3*t^6.)/g2^2 + g1^2*g2^2*t^8. + (g2^3*t^8.)/g1 + (2*t^8.)/g3^2 + (g2^4*t^8.)/g3^2 + (g1*g2^3*t^8.)/g3 + 2*g2^2*g3*t^8. + 2*g1*g2*g3^2*t^8. + (g2^2*g3^2*t^8.)/g1^2 + g1^2*g3^3*t^8. + (2*g2*g3^3*t^8.)/g1 + 3*g3^4*t^8. + (g3^5*t^8.)/g1^2 + (2*g1*g3^5*t^8.)/g2 + (g1^2*g3^6*t^8.)/g2^2 + (2*g3^6*t^8.)/(g1*g2) + (2*g3^7*t^8.)/g2^2 + (g1*g3^8*t^8.)/g2^3 + (g3^8*t^8.)/(g1^2*g2^2) + (g3^9*t^8.)/(g1*g2^3) + (g3^10*t^8.)/g2^4 - t^4./(g3*y) - t^7./(g3^4*y) + (g3^2*t^7.)/y - (t^4.*y)/g3 - (t^7.*y)/g3^4 + g3^2*t^7.*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45859 $\phi_1q_1q_2$ + $ M_1\tilde{q}_1\tilde{q}_2$ + $ \phi_1^2X_1$ + $ \phi_1\tilde{q}_2^2$ 0.4723 0.5327 0.8867 [X:[1.5173], M:[0.7241], q:[0.8793, 0.8793], qb:[0.3966, 0.8793], phi:[0.2414]] t^2.17 + t^3.1 + 2*t^3.83 + t^4.34 + t^4.55 + t^5.28 - 2*t^6. - t^3.72/y - t^5.9/y - t^3.72*y - t^5.9*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55736 SU2adj1nf3 $\phi_1q_1q_2$ + $ q_2q_3$ + $ q_3\tilde{q}_1$ + $ M_1\tilde{q}_2\tilde{q}_3$ + $ \phi_1^2X_1$ 0.5833 0.6667 0.875 [X:[1.3333], M:[1.0], q:[0.8333, 0.8333, 1.1667], qb:[0.8333, 0.5, 0.5], phi:[0.3333]] t^3. + 8*t^4. + t^5. - 8*t^6. - t^4./y - t^4.*y detail {a: 7/12, c: 2/3, X1: 4/3, M1: 1, q1: 5/6, q2: 5/6, q3: 7/6, qb1: 5/6, qb2: 1/2, qb3: 1/2, phi1: 1/3}


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
39 SU2adj1nf2 $\phi_1q_1q_2$ 0.6076 0.7195 0.8446 [X:[], M:[], q:[0.8211, 0.8211], qb:[0.4632, 0.4632], phi:[0.3578]] t^2.15 + t^2.78 + 7*t^3.85 + t^4.29 + 2*t^4.93 + t^5.56 - 2*t^6. - t^4.07/y - t^4.07*y detail