Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
4582 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}^{2}$ + ${ }M_{5}M_{7}$ + ${ }M_{8}q_{1}\tilde{q}_{2}$ | 0.6992 | 0.8614 | 0.8117 | [M:[1.0127, 0.9619, 1.0381, 0.9365, 1.0635, 1.0127, 0.9365, 0.9111], q:[0.5063, 0.481], qb:[0.4556, 0.5825], phi:[0.4937]] | [M:[[2], [-6], [6], [-10], [10], [2], [-10], [-14]], q:[[1], [-3]], qb:[[-7], [13]], phi:[[-1]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{8}$, ${ }M_{4}$, ${ }M_{7}$, ${ }M_{2}$, ${ }M_{1}$, ${ }M_{6}$, ${ }M_{3}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{8}^{2}$, ${ }M_{4}M_{8}$, ${ }M_{7}M_{8}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{2}M_{8}$, ${ }M_{2}M_{4}$, ${ }M_{2}M_{7}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{8}$, ${ }M_{6}M_{8}$, ${ }M_{1}M_{4}$, ${ }M_{4}M_{6}$, ${ }M_{1}M_{7}$, ${ }M_{6}M_{7}$, ${ }M_{3}M_{8}$, ${ }M_{1}M_{2}$, ${ }M_{3}M_{4}$, ${ }M_{2}M_{6}$, ${ }M_{3}M_{7}$ | ${}$ | -3 | t^2.733 + 2*t^2.81 + t^2.886 + 2*t^3.038 + t^3.114 + t^4.214 + t^4.291 + 2*t^4.367 + t^4.443 + t^4.519 + t^4.595 + t^4.671 + t^4.748 + t^4.976 + t^5.467 + 2*t^5.543 + 3*t^5.619 + t^5.695 + 2*t^5.771 + 4*t^5.848 + 2*t^5.924 - 3*t^6. + t^6.152 - t^6.305 - t^6.381 + t^6.948 + 3*t^7.024 + 4*t^7.1 + 4*t^7.176 + 4*t^7.252 + 4*t^7.329 + 4*t^7.405 + 2*t^7.481 + t^7.709 + 2*t^7.786 - t^7.938 + t^8.014 + t^8.09 + t^8.2 + 2*t^8.276 + 3*t^8.353 + 4*t^8.429 + 4*t^8.505 + 6*t^8.581 + 6*t^8.657 - 4*t^8.81 + 2*t^8.962 - t^4.481/y - t^7.214/y - t^7.291/y + t^7.443/y - t^7.519/y + t^7.671/y + t^7.748/y + (2*t^8.543)/y + (2*t^8.619)/y + (2*t^8.695)/y + (2*t^8.771)/y + (5*t^8.848)/y + (4*t^8.924)/y - t^4.481*y - t^7.214*y - t^7.291*y + t^7.443*y - t^7.519*y + t^7.671*y + t^7.748*y + 2*t^8.543*y + 2*t^8.619*y + 2*t^8.695*y + 2*t^8.771*y + 5*t^8.848*y + 4*t^8.924*y | t^2.733/g1^14 + (2*t^2.81)/g1^10 + t^2.886/g1^6 + 2*g1^2*t^3.038 + g1^6*t^3.114 + t^4.214/g1^15 + t^4.291/g1^11 + (2*t^4.367)/g1^7 + t^4.443/g1^3 + g1*t^4.519 + g1^5*t^4.595 + g1^9*t^4.671 + g1^13*t^4.748 + g1^25*t^4.976 + t^5.467/g1^28 + (2*t^5.543)/g1^24 + (3*t^5.619)/g1^20 + t^5.695/g1^16 + (2*t^5.771)/g1^12 + (4*t^5.848)/g1^8 + (2*t^5.924)/g1^4 - 3*t^6. + g1^8*t^6.152 - g1^16*t^6.305 - g1^20*t^6.381 + t^6.948/g1^29 + (3*t^7.024)/g1^25 + (4*t^7.1)/g1^21 + (4*t^7.176)/g1^17 + (4*t^7.252)/g1^13 + (4*t^7.329)/g1^9 + (4*t^7.405)/g1^5 + (2*t^7.481)/g1 + g1^11*t^7.709 + 2*g1^15*t^7.786 - g1^23*t^7.938 + g1^27*t^8.014 + g1^31*t^8.09 + t^8.2/g1^42 + (2*t^8.276)/g1^38 + (3*t^8.353)/g1^34 + (4*t^8.429)/g1^30 + (4*t^8.505)/g1^26 + (6*t^8.581)/g1^22 + (6*t^8.657)/g1^18 - (4*t^8.81)/g1^10 + (2*t^8.962)/g1^2 - t^4.481/(g1*y) - t^7.214/(g1^15*y) - t^7.291/(g1^11*y) + t^7.443/(g1^3*y) - (g1*t^7.519)/y + (g1^9*t^7.671)/y + (g1^13*t^7.748)/y + (2*t^8.543)/(g1^24*y) + (2*t^8.619)/(g1^20*y) + (2*t^8.695)/(g1^16*y) + (2*t^8.771)/(g1^12*y) + (5*t^8.848)/(g1^8*y) + (4*t^8.924)/(g1^4*y) - (t^4.481*y)/g1 - (t^7.214*y)/g1^15 - (t^7.291*y)/g1^11 + (t^7.443*y)/g1^3 - g1*t^7.519*y + g1^9*t^7.671*y + g1^13*t^7.748*y + (2*t^8.543*y)/g1^24 + (2*t^8.619*y)/g1^20 + (2*t^8.695*y)/g1^16 + (2*t^8.771*y)/g1^12 + (5*t^8.848*y)/g1^8 + (4*t^8.924*y)/g1^4 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
2528 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{6}\phi_{1}^{2}$ + ${ }M_{5}M_{7}$ | 0.6931 | 0.8496 | 0.8159 | [M:[1.006, 0.9819, 1.0181, 0.9698, 1.0302, 1.006, 0.9698], q:[0.503, 0.4909], qb:[0.4789, 0.5392], phi:[0.497]] | 2*t^2.909 + t^2.946 + 2*t^3.018 + t^3.054 + t^3.127 + t^4.364 + t^4.4 + 2*t^4.437 + t^4.473 + t^4.509 + t^4.545 + t^4.581 + t^4.618 + t^4.726 + 2*t^5.819 + t^5.855 + 3*t^5.928 + 2*t^5.964 - 3*t^6. - t^4.491/y - t^4.491*y | detail |