Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
4576 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}M_{6}$ + ${ }M_{1}M_{7}$ + ${ }M_{8}q_{1}\tilde{q}_{2}$ | 0.6993 | 0.8615 | 0.8117 | [M:[1.0128, 0.9615, 1.0385, 0.9358, 1.0642, 0.9615, 0.9872, 0.9102], q:[0.5064, 0.4808], qb:[0.4551, 0.5834], phi:[0.4936]] | [M:[[2], [-6], [6], [-10], [10], [-6], [-2], [-14]], q:[[1], [-3]], qb:[[-7], [13]], phi:[[-1]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{8}$, ${ }M_{4}$, ${ }M_{2}$, ${ }M_{6}$, ${ }M_{7}$, ${ }\phi_{1}^{2}$, ${ }M_{5}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{8}^{2}$, ${ }M_{4}M_{8}$, ${ }M_{4}^{2}$, ${ }M_{2}M_{8}$, ${ }M_{6}M_{8}$, ${ }M_{2}M_{4}$, ${ }M_{4}M_{6}$, ${ }M_{7}M_{8}$, ${ }M_{8}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{4}M_{7}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{2}M_{7}$, ${ }M_{6}M_{7}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{7}^{2}$, ${ }M_{5}M_{8}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$ | ${}$ | -3 | t^2.731 + t^2.808 + 2*t^2.885 + 2*t^2.962 + t^3.192 + t^4.211 + t^4.288 + 2*t^4.365 + t^4.442 + t^4.519 + t^4.596 + t^4.673 + t^4.75 + t^4.981 + t^5.461 + t^5.538 + 2*t^5.615 + 3*t^5.692 + 4*t^5.769 + 3*t^5.846 + 2*t^5.923 - 3*t^6. - t^6.077 + t^6.154 - t^6.231 - t^6.308 + t^6.942 + 2*t^7.019 + 4*t^7.096 + 5*t^7.173 + 5*t^7.25 + 5*t^7.327 + 2*t^7.404 + t^7.481 + t^7.558 + t^7.635 + t^7.712 - t^7.789 + t^7.866 + 2*t^7.943 - t^8.02 + t^8.174 + t^8.192 + t^8.269 + 2*t^8.346 + 4*t^8.423 + 5*t^8.5 + 6*t^8.577 + 7*t^8.654 + 4*t^8.731 - 4*t^8.885 - 7*t^8.962 - t^4.481/y - t^7.211/y - t^7.365/y - t^7.442/y + t^7.519/y + t^7.596/y + t^7.75/y + t^8.538/y + (2*t^8.615)/y + (4*t^8.692)/y + (3*t^8.769)/y + (4*t^8.846)/y + (2*t^8.923)/y - t^4.481*y - t^7.211*y - t^7.365*y - t^7.442*y + t^7.519*y + t^7.596*y + t^7.75*y + t^8.538*y + 2*t^8.615*y + 4*t^8.692*y + 3*t^8.769*y + 4*t^8.846*y + 2*t^8.923*y | t^2.731/g1^14 + t^2.808/g1^10 + (2*t^2.885)/g1^6 + (2*t^2.962)/g1^2 + g1^10*t^3.192 + t^4.211/g1^15 + t^4.288/g1^11 + (2*t^4.365)/g1^7 + t^4.442/g1^3 + g1*t^4.519 + g1^5*t^4.596 + g1^9*t^4.673 + g1^13*t^4.75 + g1^25*t^4.981 + t^5.461/g1^28 + t^5.538/g1^24 + (2*t^5.615)/g1^20 + (3*t^5.692)/g1^16 + (4*t^5.769)/g1^12 + (3*t^5.846)/g1^8 + (2*t^5.923)/g1^4 - 3*t^6. - g1^4*t^6.077 + g1^8*t^6.154 - g1^12*t^6.231 - g1^16*t^6.308 + t^6.942/g1^29 + (2*t^7.019)/g1^25 + (4*t^7.096)/g1^21 + (5*t^7.173)/g1^17 + (5*t^7.25)/g1^13 + (5*t^7.327)/g1^9 + (2*t^7.404)/g1^5 + t^7.481/g1 + g1^3*t^7.558 + g1^7*t^7.635 + g1^11*t^7.712 - g1^15*t^7.789 + g1^19*t^7.866 + 2*g1^23*t^7.943 - g1^27*t^8.02 + g1^35*t^8.174 + t^8.192/g1^42 + t^8.269/g1^38 + (2*t^8.346)/g1^34 + (4*t^8.423)/g1^30 + (5*t^8.5)/g1^26 + (6*t^8.577)/g1^22 + (7*t^8.654)/g1^18 + (4*t^8.731)/g1^14 - (4*t^8.885)/g1^6 - (7*t^8.962)/g1^2 - t^4.481/(g1*y) - t^7.211/(g1^15*y) - t^7.365/(g1^7*y) - t^7.442/(g1^3*y) + (g1*t^7.519)/y + (g1^5*t^7.596)/y + (g1^13*t^7.75)/y + t^8.538/(g1^24*y) + (2*t^8.615)/(g1^20*y) + (4*t^8.692)/(g1^16*y) + (3*t^8.769)/(g1^12*y) + (4*t^8.846)/(g1^8*y) + (2*t^8.923)/(g1^4*y) - (t^4.481*y)/g1 - (t^7.211*y)/g1^15 - (t^7.365*y)/g1^7 - (t^7.442*y)/g1^3 + g1*t^7.519*y + g1^5*t^7.596*y + g1^13*t^7.75*y + (t^8.538*y)/g1^24 + (2*t^8.615*y)/g1^20 + (4*t^8.692*y)/g1^16 + (3*t^8.769*y)/g1^12 + (4*t^8.846*y)/g1^8 + (2*t^8.923*y)/g1^4 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
2521 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}M_{6}$ + ${ }M_{1}M_{7}$ | 0.6931 | 0.8496 | 0.8159 | [M:[1.0061, 0.9818, 1.0182, 0.9697, 1.0303, 0.9818, 0.9939], q:[0.503, 0.4909], qb:[0.4788, 0.5394], phi:[0.497]] | t^2.909 + 2*t^2.945 + 2*t^2.982 + t^3.091 + t^3.127 + t^4.363 + t^4.4 + 2*t^4.436 + t^4.473 + t^4.509 + t^4.546 + t^4.582 + t^4.618 + t^4.728 + t^5.854 + 4*t^5.891 + 3*t^5.927 + t^5.964 - 3*t^6. - t^4.491/y - t^4.491*y | detail |