Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
4556 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{5}M_{8}$ + ${ }M_{7}^{2}$ + ${ }M_{6}X_{1}$ | 0.6401 | 0.8077 | 0.7925 | [X:[1.4394], M:[0.7123, 1.0454, 0.9546, 0.803, 1.197, 0.5606, 1.0, 0.803], q:[0.7651, 0.5227], qb:[0.2803, 0.6743], phi:[0.4394]] | [X:[[2]], M:[[26], [-18], [18], [-10], [10], [-2], [0], [-10]], q:[[-17], [-9]], qb:[[-1], [19]], phi:[[2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }M_{4}$, ${ }M_{8}$, ${ }\phi_{1}^{2}$, ${ }M_{3}$, ${ }M_{7}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{4}$, ${ }M_{1}M_{8}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{8}$, ${ }M_{8}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{8}\phi_{1}^{2}$, ${ }M_{1}M_{7}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{1}M_{2}$, ${ }M_{3}M_{4}$, ${ }M_{3}M_{8}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{4}M_{7}$, ${ }M_{7}M_{8}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{2}M_{8}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{3}M_{7}$, ${ }\phi_{1}q_{1}^{2}$ | ${}$ | -2 | t^2.137 + 2*t^2.409 + t^2.636 + t^2.864 + t^3. + t^3.136 + t^3.727 + t^4.182 + t^4.274 + t^4.318 + 2*t^4.454 + t^4.546 + t^4.773 + 2*t^4.818 + t^4.909 + t^5.001 + 2*t^5.045 + t^5.137 + t^5.181 + 2*t^5.273 + t^5.364 + 2*t^5.409 + t^5.5 + t^5.545 + 2*t^5.636 + t^5.773 + t^5.864 + t^5.909 - 2*t^6. + 2*t^6.136 + t^6.319 + t^6.41 + 2*t^6.591 + t^6.682 + t^6.819 + 3*t^6.863 + t^6.91 + t^6.955 + t^7.046 + t^7.091 + t^7.137 + 2*t^7.182 + 2*t^7.227 + t^7.274 + 2*t^7.318 + 2*t^7.41 + 4*t^7.454 + t^7.501 + t^7.546 + 2*t^7.59 + t^7.637 + t^7.682 + 3*t^7.773 + t^7.818 + 3*t^7.909 + t^7.954 + 2*t^8.001 + 3*t^8.045 - t^8.137 + 3*t^8.181 + t^8.228 + t^8.273 + 2*t^8.318 + t^8.364 - 4*t^8.409 + t^8.456 + t^8.5 + 2*t^8.545 + t^8.547 + t^8.636 + t^8.773 + t^8.819 - 4*t^8.864 + 3*t^8.909 + t^8.955 - t^4.318/y - t^6.455/y - t^6.727/y - t^6.955/y + (2*t^7.546)/y + t^7.682/y + t^7.773/y + t^7.818/y + t^7.909/y + t^8.001/y + (2*t^8.045)/y + t^8.137/y + t^8.181/y + (3*t^8.273)/y + (2*t^8.409)/y + t^8.5/y + (2*t^8.545)/y - t^8.592/y + t^8.636/y + t^8.773/y + t^8.864/y - t^4.318*y - t^6.455*y - t^6.727*y - t^6.955*y + 2*t^7.546*y + t^7.682*y + t^7.773*y + t^7.818*y + t^7.909*y + t^8.001*y + 2*t^8.045*y + t^8.137*y + t^8.181*y + 3*t^8.273*y + 2*t^8.409*y + t^8.5*y + 2*t^8.545*y - t^8.592*y + t^8.636*y + t^8.773*y + t^8.864*y | g1^26*t^2.137 + (2*t^2.409)/g1^10 + g1^4*t^2.636 + g1^18*t^2.864 + t^3. + t^3.136/g1^18 + t^3.727/g1^8 + g1^20*t^4.182 + g1^52*t^4.274 + g1^2*t^4.318 + (2*t^4.454)/g1^16 + g1^16*t^4.546 + g1^30*t^4.773 + (2*t^4.818)/g1^20 + g1^12*t^4.909 + g1^44*t^5.001 + (2*t^5.045)/g1^6 + g1^26*t^5.137 + t^5.181/g1^24 + 2*g1^8*t^5.273 + g1^40*t^5.364 + (2*t^5.409)/g1^10 + g1^22*t^5.5 + t^5.545/g1^28 + 2*g1^4*t^5.636 + t^5.773/g1^14 + g1^18*t^5.864 + t^5.909/g1^32 - 2*t^6. + (2*t^6.136)/g1^18 + g1^46*t^6.319 + g1^78*t^6.41 + 2*g1^10*t^6.591 + g1^42*t^6.682 + g1^24*t^6.819 + (3*t^6.863)/g1^26 + g1^56*t^6.91 + g1^6*t^6.955 + g1^38*t^7.046 + t^7.091/g1^12 + g1^70*t^7.137 + 2*g1^20*t^7.182 + (2*t^7.227)/g1^30 + g1^52*t^7.274 + 2*g1^2*t^7.318 + 2*g1^34*t^7.41 + (4*t^7.454)/g1^16 + g1^66*t^7.501 + g1^16*t^7.546 + (2*t^7.59)/g1^34 + g1^48*t^7.637 + t^7.682/g1^2 + 3*g1^30*t^7.773 + t^7.818/g1^20 + 3*g1^12*t^7.909 + t^7.954/g1^38 + 2*g1^44*t^8.001 + (3*t^8.045)/g1^6 - g1^26*t^8.137 + (3*t^8.181)/g1^24 + g1^58*t^8.228 + g1^8*t^8.273 + (2*t^8.318)/g1^42 + g1^40*t^8.364 - (4*t^8.409)/g1^10 + g1^72*t^8.456 + g1^22*t^8.5 + (2*t^8.545)/g1^28 + g1^104*t^8.547 + g1^4*t^8.636 + t^8.773/g1^14 + g1^68*t^8.819 - 4*g1^18*t^8.864 + (3*t^8.909)/g1^32 + g1^50*t^8.955 - (g1^2*t^4.318)/y - (g1^28*t^6.455)/y - t^6.727/(g1^8*y) - (g1^6*t^6.955)/y + (2*g1^16*t^7.546)/y + t^7.682/(g1^2*y) + (g1^30*t^7.773)/y + t^7.818/(g1^20*y) + (g1^12*t^7.909)/y + (g1^44*t^8.001)/y + (2*t^8.045)/(g1^6*y) + (g1^26*t^8.137)/y + t^8.181/(g1^24*y) + (3*g1^8*t^8.273)/y + (2*t^8.409)/(g1^10*y) + (g1^22*t^8.5)/y + (2*t^8.545)/(g1^28*y) - (g1^54*t^8.592)/y + (g1^4*t^8.636)/y + t^8.773/(g1^14*y) + (g1^18*t^8.864)/y - g1^2*t^4.318*y - g1^28*t^6.455*y - (t^6.727*y)/g1^8 - g1^6*t^6.955*y + 2*g1^16*t^7.546*y + (t^7.682*y)/g1^2 + g1^30*t^7.773*y + (t^7.818*y)/g1^20 + g1^12*t^7.909*y + g1^44*t^8.001*y + (2*t^8.045*y)/g1^6 + g1^26*t^8.137*y + (t^8.181*y)/g1^24 + 3*g1^8*t^8.273*y + (2*t^8.409*y)/g1^10 + g1^22*t^8.5*y + (2*t^8.545*y)/g1^28 - g1^54*t^8.592*y + g1^4*t^8.636*y + (t^8.773*y)/g1^14 + g1^18*t^8.864*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
6079 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{5}M_{8}$ + ${ }M_{7}^{2}$ + ${ }M_{6}X_{1}$ + ${ }M_{1}M_{3}$ | 0.61 | 0.7747 | 0.7873 | [X:[1.4545], M:[0.9091, 0.9091, 1.0909, 0.7273, 1.2727, 0.5455, 1.0, 0.7273], q:[0.6364, 0.4545], qb:[0.2727, 0.8182], phi:[0.4545]] | 2*t^2.182 + 3*t^2.727 + t^3. + t^3.273 + t^3.545 + 2*t^4.091 + 3*t^4.364 + 2*t^4.636 + 4*t^4.909 + 4*t^5.182 + 5*t^5.455 + 5*t^5.727 - t^4.364/y - t^4.364*y | detail | {a: 6495/10648, c: 16499/21296, X1: 16/11, M1: 10/11, M2: 10/11, M3: 12/11, M4: 8/11, M5: 14/11, M6: 6/11, M7: 1, M8: 8/11, q1: 7/11, q2: 5/11, qb1: 3/11, qb2: 9/11, phi1: 5/11} |
6093 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{5}M_{8}$ + ${ }M_{7}^{2}$ + ${ }M_{6}X_{1}$ + ${ }M_{9}\phi_{1}q_{2}\tilde{q}_{1}$ | 0.6589 | 0.8419 | 0.7826 | [X:[1.4388], M:[0.7044, 1.0508, 0.9492, 0.806, 1.194, 0.5612, 1.0, 0.806, 0.7552], q:[0.7702, 0.5254], qb:[0.2806, 0.6686], phi:[0.4388]] | t^2.113 + t^2.266 + 2*t^2.418 + t^2.633 + t^2.848 + t^3. + t^3.152 + t^4.164 + t^4.226 + t^4.316 + t^4.379 + 2*t^4.469 + 2*t^4.531 + 2*t^4.684 + t^4.746 + 2*t^4.836 + 2*t^4.898 + t^4.961 + 2*t^5.051 + 2*t^5.113 + t^5.203 + 3*t^5.266 + t^5.328 + 3*t^5.418 + t^5.48 + t^5.571 + 2*t^5.633 + t^5.785 + t^5.938 - 2*t^6. - t^4.316/y - t^4.316*y | detail | |
6092 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{5}M_{8}$ + ${ }M_{7}^{2}$ + ${ }M_{6}X_{1}$ + ${ }\phi_{1}q_{1}^{2}$ | 0.6396 | 0.8075 | 0.792 | [X:[1.4375], M:[0.6875, 1.0625, 0.9375, 0.8125, 1.1875, 0.5625, 1.0, 0.8125], q:[0.7813, 0.5313], qb:[0.2813, 0.6563], phi:[0.4375]] | t^2.063 + 2*t^2.438 + t^2.625 + t^2.813 + t^3. + t^3.188 + t^3.75 + 2*t^4.125 + t^4.313 + 3*t^4.5 + t^4.688 + 4*t^4.875 + 3*t^5.063 + 4*t^5.25 + 3*t^5.438 + 3*t^5.625 + 2*t^5.813 - t^6. - t^4.313/y - t^4.313*y | detail | {a: 83829/131072, c: 105845/131072, X1: 23/16, M1: 11/16, M2: 17/16, M3: 15/16, M4: 13/16, M5: 19/16, M6: 9/16, M7: 1, M8: 13/16, q1: 25/32, q2: 17/32, qb1: 9/32, qb2: 21/32, phi1: 7/16} |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
2515 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{5}M_{8}$ | 0.7393 | 0.93 | 0.7949 | [M:[0.8552, 1.0409, 0.9591, 0.937, 1.063, 0.8332, 0.6928, 0.937], q:[0.6243, 0.5205], qb:[0.4166, 0.5425], phi:[0.474]] | t^2.078 + t^2.5 + t^2.566 + 2*t^2.811 + t^2.844 + t^2.877 + t^3.123 + t^4.157 + t^4.233 + t^4.299 + 2*t^4.545 + t^4.578 + t^4.611 + t^4.644 + t^4.677 + t^4.856 + 2*t^4.889 + 2*t^4.923 + t^4.956 + t^4.999 + t^5.065 + t^5.131 + t^5.168 + t^5.201 + 2*t^5.311 + t^5.344 + 2*t^5.377 + t^5.41 + t^5.443 + 3*t^5.622 + 2*t^5.655 + 2*t^5.688 + t^5.721 + t^5.934 + t^5.967 - 3*t^6. - t^4.422/y - t^4.422*y | detail |