Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
45505 SO5adj1nf2 ${}M_{1}\phi_{1}^{2}q_{1}$ + ${ }q_{1}^{3}q_{2}$ + ${ }M_{1}q_{2}^{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}^{4}$ + ${ }M_{3}q_{1}^{2}$ + ${ }M_{1}M_{4}$ 1.7564 1.8489 0.95 [X:[1.36], M:[0.88, 0.72, 1.04, 1.12], q:[0.48, 0.56], qb:[], phi:[0.32]] [X:[[0]], M:[[0], [0], [0], [0]], q:[[0], [0]], qb:[], phi:[[0]]] 0 {a: 439089/250000, c: 231107/125000, X1: 34/25, M1: 22/25, M2: 18/25, M3: 26/25, M4: 28/25, q1: 12/25, q2: 14/25, phi1: 8/25}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{3}$, ${ }q_{1}q_{2}$, ${ }M_{4}$, ${ }q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }X_{1}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}q_{1}q_{2}$, ${ }\phi_{1}^{2}q_{2}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{2}q_{2}^{2}$ ${}\phi_{1}^{3}q_{1}q_{2}$ -1 t^2.16 + 2*t^3.12 + 2*t^3.36 + t^3.6 + 2*t^4.08 + t^4.32 + t^4.8 + t^5.04 + 3*t^5.28 + 2*t^5.52 - t^6. + 3*t^6.24 + 4*t^6.48 + 4*t^6.72 + 2*t^6.96 + 5*t^7.2 + 7*t^7.44 + 3*t^7.68 + t^7.92 + 4*t^8.16 + 7*t^8.4 + 5*t^8.64 + 4*t^8.88 - t^3.96/y - t^5.4/y - t^5.64/y - t^5.88/y - t^6.12/y - (2*t^7.08)/y - (2*t^7.32)/y - (2*t^7.56)/y - t^7.8/y - (2*t^8.04)/y + (2*t^8.28)/y + t^8.52/y - (3*t^8.76)/y - t^3.96*y - t^5.4*y - t^5.64*y - t^5.88*y - t^6.12*y - 2*t^7.08*y - 2*t^7.32*y - 2*t^7.56*y - t^7.8*y - 2*t^8.04*y + 2*t^8.28*y + t^8.52*y - 3*t^8.76*y t^2.16 + 2*t^3.12 + 2*t^3.36 + t^3.6 + 2*t^4.08 + t^4.32 + t^4.8 + t^5.04 + 3*t^5.28 + 2*t^5.52 - t^6. + 3*t^6.24 + 4*t^6.48 + 4*t^6.72 + 2*t^6.96 + 5*t^7.2 + 7*t^7.44 + 3*t^7.68 + t^7.92 + 4*t^8.16 + 7*t^8.4 + 5*t^8.64 + 4*t^8.88 - t^3.96/y - t^5.4/y - t^5.64/y - t^5.88/y - t^6.12/y - (2*t^7.08)/y - (2*t^7.32)/y - (2*t^7.56)/y - t^7.8/y - (2*t^8.04)/y + (2*t^8.28)/y + t^8.52/y - (3*t^8.76)/y - t^3.96*y - t^5.4*y - t^5.64*y - t^5.88*y - t^6.12*y - 2*t^7.08*y - 2*t^7.32*y - 2*t^7.56*y - t^7.8*y - 2*t^8.04*y + 2*t^8.28*y + t^8.52*y - 3*t^8.76*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45320 SO5adj1nf2 ${}M_{1}\phi_{1}^{2}q_{1}$ + ${ }q_{1}^{3}q_{2}$ + ${ }M_{1}q_{2}^{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}^{4}$ + ${ }M_{3}q_{1}^{2}$ 1.7671 1.8671 0.9464 [X:[1.36], M:[0.88, 0.72, 1.04], q:[0.48, 0.56], qb:[], phi:[0.32]] t^2.16 + t^2.64 + 2*t^3.12 + t^3.36 + t^3.6 + 2*t^4.08 + t^4.32 + 2*t^4.8 + t^5.04 + 4*t^5.28 + t^5.52 + 2*t^5.76 - t^3.96/y - t^5.4/y - t^5.64/y - t^5.88/y - t^3.96*y - t^5.4*y - t^5.64*y - t^5.88*y detail {a: 22089/12500, c: 23339/12500, X1: 34/25, M1: 22/25, M2: 18/25, M3: 26/25, q1: 12/25, q2: 14/25, phi1: 8/25}