Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
45294 SO5adj1nf2 $M_1q_1q_2$ + $ \phi_1^4q_1$ + $ M_2\phi_1q_1q_2$ + $ M_3\phi_1^2q_1$ + $ M_4q_1^2$ 1.8095 1.9498 0.928 [X:[], M:[1.1263, 0.7509, 0.7509, 1.0036], q:[0.4982, 0.3754], qb:[], phi:[0.3754]] [X:[], M:[[3], [2], [2], [8]], q:[[-4], [1]], qb:[], phi:[[1]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_3$, $ \phi_1^2$, $ q_2^2$, $ M_4$, $ M_1$, $ \phi_1^2q_2$, $ M_2^2$, $ M_2M_3$, $ M_3^2$, $ M_2\phi_1^2$, $ M_3\phi_1^2$, $ \phi_1^4$, $ M_2q_2^2$, $ M_3q_2^2$, $ \phi_1^2q_2^2$, $ q_2^4$, $ \phi_1^2q_1q_2$, $ \phi_1^2q_1^2$, $ M_2M_4$, $ M_3M_4$, $ M_4\phi_1^2$, $ M_4q_2^2$, $ M_1M_2$, $ M_1M_3$, $ M_1\phi_1^2$, $ M_2\phi_1^2q_2$, $ M_3\phi_1^2q_2$, $ \phi_1^4q_2$, $ \phi_1^2q_2^3$ $\phi_1^3q_1q_2$ -1 4*t^2.25 + t^3.01 + 2*t^3.38 + 12*t^4.51 + t^4.87 + t^5.24 + 4*t^5.26 + 7*t^5.63 - t^6. + t^6.02 - t^6.37 + 2*t^6.39 + 29*t^6.76 + 2*t^7.13 + 2*t^7.49 + 12*t^7.52 + 20*t^7.88 - 4*t^8.25 + 4*t^8.27 - 5*t^8.62 + 7*t^8.64 - t^8.99 - t^4.13/y - t^5.25/y - t^5.62/y - (5*t^6.38)/y - t^7.14/y - (3*t^7.87)/y + (3*t^8.26)/y - (9*t^8.63)/y - t^4.13*y - t^5.25*y - t^5.62*y - 5*t^6.38*y - t^7.14*y - 3*t^7.87*y + 3*t^8.26*y - 9*t^8.63*y 4*g1^2*t^2.25 + g1^8*t^3.01 + 2*g1^3*t^3.38 + 12*g1^4*t^4.51 + t^4.87/g1 + t^5.24/g1^6 + 4*g1^10*t^5.26 + 7*g1^5*t^5.63 - t^6. + g1^16*t^6.02 - t^6.37/g1^5 + 2*g1^11*t^6.39 + 29*g1^6*t^6.76 + 2*g1*t^7.13 + (2*t^7.49)/g1^4 + 12*g1^12*t^7.52 + 20*g1^7*t^7.88 - 4*g1^2*t^8.25 + 4*g1^18*t^8.27 - (5*t^8.62)/g1^3 + 7*g1^13*t^8.64 - t^8.99/g1^8 - (g1*t^4.13)/y - (g1^2*t^5.25)/y - t^5.62/(g1^3*y) - (5*g1^3*t^6.38)/y - (g1^9*t^7.14)/y - (3*t^7.87)/(g1*y) + (3*g1^10*t^8.26)/y - (9*g1^5*t^8.63)/y - g1*t^4.13*y - g1^2*t^5.25*y - (t^5.62*y)/g1^3 - 5*g1^3*t^6.38*y - g1^9*t^7.14*y - (3*t^7.87*y)/g1 + 3*g1^10*t^8.26*y - 9*g1^5*t^8.63*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45249 SO5adj1nf2 $M_1q_1q_2$ + $ \phi_1^4q_1$ + $ M_2\phi_1q_1q_2$ + $ M_3\phi_1^2q_1$ 1.8131 1.9525 0.9286 [X:[], M:[1.1522, 0.7682, 0.7682], q:[0.4637, 0.3841], qb:[], phi:[0.3841]] 4*t^2.3 + t^2.78 + 2*t^3.46 + 12*t^4.61 + t^4.85 + 5*t^5.09 + t^5.56 + 7*t^5.76 - t^6. - t^4.15/y - t^5.3/y - t^5.54/y - t^4.15*y - t^5.3*y - t^5.54*y detail