Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
45244 SO5adj1nf2 $q_1^3q_2$ + $ M_1q_2^2$ + $ M_2\phi_1^2q_2$ + $ \phi_1^2X_1$ + $ M_2q_1^2$ 1.7323 1.8175 0.9531 [X:[1.2727], M:[1.2727, 0.9091], q:[0.5455, 0.3636], qb:[], phi:[0.3636]] [X:[[0]], M:[[0], [0]], q:[[0], [0]], qb:[], phi:[[0]]] 0 {a: 36891/21296, c: 19353/10648, X1: 14/11, M1: 14/11, M2: 10/11, q1: 6/11, q2: 4/11, phi1: 4/11}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ q_1q_2$, $ q_1^2$, $ M_1$, $ \phi_1^2q_1$, $ \phi_1q_1q_2$, $ X_1$, $ \phi_1^4$, $ \phi_1^2q_2^2$, $ \phi_1^2q_1q_2$, $ M_2^2$, $ \phi_1^2q_1^2$, $ M_2q_1q_2$ $\phi_1^3q_1q_2$ 1 2*t^2.73 + t^3.27 + 4*t^3.82 + 2*t^4.36 + t^4.91 + 3*t^5.45 + t^6. + 6*t^6.55 + 6*t^7.09 + 11*t^7.64 + 10*t^8.18 + 4*t^8.73 - t^4.09/y - t^5.18/y - t^5.73/y - t^6.27/y - (2*t^6.82)/y - t^7.36/y - (5*t^7.91)/y - (2*t^8.45)/y - t^4.09*y - t^5.18*y - t^5.73*y - t^6.27*y - 2*t^6.82*y - t^7.36*y - 5*t^7.91*y - 2*t^8.45*y 2*t^2.73 + t^3.27 + 4*t^3.82 + 2*t^4.36 + t^4.91 + 3*t^5.45 + t^6. + 6*t^6.55 + 6*t^7.09 + 11*t^7.64 + 10*t^8.18 + 4*t^8.73 - t^4.09/y - t^5.18/y - t^5.73/y - t^6.27/y - (2*t^6.82)/y - t^7.36/y - (5*t^7.91)/y - (2*t^8.45)/y - t^4.09*y - t^5.18*y - t^5.73*y - t^6.27*y - 2*t^6.82*y - t^7.36*y - 5*t^7.91*y - 2*t^8.45*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45404 $q_1^3q_2$ + $ M_1q_2^2$ + $ M_2\phi_1^2q_2$ + $ \phi_1^2X_1$ + $ M_2q_1^2$ + $ M_3q_1^2$ 1.7406 1.8315 0.9504 [X:[1.2727], M:[1.2727, 0.9091, 0.9091], q:[0.5455, 0.3636], qb:[], phi:[0.3636]] 3*t^2.73 + 4*t^3.82 + 2*t^4.36 + t^4.91 + 6*t^5.45 - t^6. - t^4.09/y - t^5.18/y - t^5.73/y - t^4.09*y - t^5.18*y - t^5.73*y detail {a: 9267/5324, c: 9751/5324, X1: 14/11, M1: 14/11, M2: 10/11, M3: 10/11, q1: 6/11, q2: 4/11, phi1: 4/11}


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45072 SO5adj1nf2 $q_1^3q_2$ + $ M_1q_2^2$ + $ M_2\phi_1^2q_2$ + $ \phi_1^2X_1$ 1.7773 1.871 0.9499 [X:[1.3327], M:[1.003, 0.8342], q:[0.5005, 0.4985], qb:[], phi:[0.3337]] t^2.5 + 2*t^3. + t^3.01 + t^3.5 + 3*t^4. + t^4.99 + 3*t^5. + t^5.5 + 2*t^5.51 - t^4./y - (2*t^5.5)/y - t^6./y - t^4.*y - 2*t^5.5*y - t^6.*y detail
45043 SO5adj1nf2 $q_1^3q_2$ + $ M_1q_2^2$ + $ M_2\phi_1^2$ 1.7632 1.8463 0.955 [X:[], M:[1.0184, 1.3293], q:[0.5031, 0.4908], qb:[], phi:[0.3354]] t^2.98 + t^3.02 + t^3.06 + t^3.48 + t^3.52 + 2*t^3.99 + t^4.02 + t^4.96 + t^4.99 + t^5.03 - t^4.01/y - t^5.48/y - t^5.52/y - t^4.01*y - t^5.48*y - t^5.52*y detail