Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
45192 SO5adj1nf2 $M_1\phi_1^2q_1$ + $ q_1^3q_2$ + $ M_1q_2^2$ + $ \phi_1^2X_1$ + $ M_2q_1^2$ 1.747 1.8295 0.9549 [X:[1.36], M:[0.88, 1.04], q:[0.48, 0.56], qb:[], phi:[0.32]] [X:[[0]], M:[[0], [0]], q:[[0], [0]], qb:[], phi:[[0]]] 0 {a: 436761/250000, c: 228693/125000, X1: 34/25, M1: 22/25, M2: 26/25, q1: 12/25, q2: 14/25, phi1: 8/25}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_2$, $ q_1q_2$, $ q_2^2$, $ \phi_1^2q_2$, $ \phi_1^4$, $ \phi_1q_1q_2$, $ X_1$, $ \phi_1^2q_1^2$, $ \phi_1^2q_1q_2$, $ M_1^2$, $ \phi_1^2q_2^2$, $ M_1M_2$, $ M_1q_1q_2$ $\phi_1^3q_1q_2$ 0 t^2.64 + 2*t^3.12 + t^3.36 + t^3.6 + t^3.84 + 2*t^4.08 + t^4.8 + t^5.04 + 2*t^5.28 + t^5.76 + 2*t^6.24 + 2*t^6.48 + 4*t^6.72 + 2*t^6.96 + 5*t^7.2 + 4*t^7.44 + 3*t^7.68 + 5*t^7.92 + 4*t^8.16 + 4*t^8.4 + t^8.64 + 3*t^8.88 - t^3.96/y - t^5.4/y - t^5.64/y - t^5.88/y - t^6.6/y - (2*t^7.08)/y - t^7.32/y - t^7.56/y - t^7.8/y - (2*t^8.04)/y - (2*t^8.52)/y - t^8.76/y - t^3.96*y - t^5.4*y - t^5.64*y - t^5.88*y - t^6.6*y - 2*t^7.08*y - t^7.32*y - t^7.56*y - t^7.8*y - 2*t^8.04*y - 2*t^8.52*y - t^8.76*y t^2.64 + 2*t^3.12 + t^3.36 + t^3.6 + t^3.84 + 2*t^4.08 + t^4.8 + t^5.04 + 2*t^5.28 + t^5.76 + 2*t^6.24 + 2*t^6.48 + 4*t^6.72 + 2*t^6.96 + 5*t^7.2 + 4*t^7.44 + 3*t^7.68 + 5*t^7.92 + 4*t^8.16 + 4*t^8.4 + t^8.64 + 3*t^8.88 - t^3.96/y - t^5.4/y - t^5.64/y - t^5.88/y - t^6.6/y - (2*t^7.08)/y - t^7.32/y - t^7.56/y - t^7.8/y - (2*t^8.04)/y - (2*t^8.52)/y - t^8.76/y - t^3.96*y - t^5.4*y - t^5.64*y - t^5.88*y - t^6.6*y - 2*t^7.08*y - t^7.32*y - t^7.56*y - t^7.8*y - 2*t^8.04*y - 2*t^8.52*y - t^8.76*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45348 $M_1\phi_1^2q_1$ + $ q_1^3q_2$ + $ M_1q_2^2$ + $ \phi_1^2X_1$ + $ M_2q_1^2$ + $ M_3q_2^2$ 1.7578 1.8478 0.9513 [X:[1.36], M:[0.88, 1.04, 0.88], q:[0.48, 0.56], qb:[], phi:[0.32]] 2*t^2.64 + 2*t^3.12 + t^3.6 + t^3.84 + 2*t^4.08 + t^4.8 + t^5.04 + 4*t^5.28 + 3*t^5.76 - t^6. - t^3.96/y - t^5.4/y - t^5.64/y - t^5.88/y - t^3.96*y - t^5.4*y - t^5.64*y - t^5.88*y detail {a: 109863/62500, c: 28872/15625, X1: 34/25, M1: 22/25, M2: 26/25, M3: 22/25, q1: 12/25, q2: 14/25, phi1: 8/25}


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45033 SO5adj1nf2 $M_1\phi_1^2q_1$ + $ q_1^3q_2$ + $ M_1q_2^2$ + $ \phi_1^2X_1$ 1.7508 1.8358 0.9537 [X:[1.36], M:[0.88], q:[0.48, 0.56], qb:[], phi:[0.32]] t^2.64 + t^2.88 + t^3.12 + t^3.36 + t^3.6 + t^3.84 + 2*t^4.08 + t^4.8 + t^5.04 + 2*t^5.28 + t^5.52 + t^5.76 + t^6. - t^3.96/y - t^5.4/y - t^5.64/y - t^5.88/y - t^3.96*y - t^5.4*y - t^5.64*y - t^5.88*y detail {a: 218847/125000, c: 28684/15625, X1: 34/25, M1: 22/25, q1: 12/25, q2: 14/25, phi1: 8/25}