Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
45189 SO5adj1nf2 $q_1^2q_2^2$ + $ \phi_1^2X_1$ + $ M_1\phi_1^2q_1$ + $ M_2\phi_1^2q_2$ + $ M_3q_2^2$ 1.7936 1.9003 0.9438 [X:[1.3333], M:[0.8539, 0.8128, 0.959], q:[0.4795, 0.5205], qb:[], phi:[0.3333]] [X:[[0]], M:[[1], [-1], [-2]], q:[[-1], [1]], qb:[], phi:[[0]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_1$, $ M_3$, $ q_1^2$, $ q_1q_2$, $ \phi_1^4$, $ \phi_1q_1q_2$, $ X_1$, $ M_2^2$, $ \phi_1^2q_1^2$, $ M_1M_2$, $ \phi_1^2q_1q_2$, $ M_1^2$, $ \phi_1^2q_2^2$, $ M_2M_3$, $ M_2q_1^2$, $ M_1M_3$, $ M_1q_1^2$, $ M_2q_1q_2$, $ M_1q_1q_2$, $ M_3^2$, $ M_3q_1^2$, $ q_1^4$, $ M_3q_1q_2$ $\phi_1^3q_1q_2$ 0 t^2.44 + t^2.56 + 2*t^2.88 + t^3. + 3*t^4. + 2*t^4.88 + 2*t^5. + 2*t^5.12 + 2*t^5.32 + 3*t^5.44 + t^5.56 + 3*t^5.75 + t^5.88 - t^6.12 + 2*t^6.44 + 2*t^6.56 + 5*t^6.88 + 2*t^7. - t^7.12 + 2*t^7.32 + 3*t^7.44 + 3*t^7.56 + 2*t^7.68 + 4*t^7.75 + 5*t^7.88 + 10*t^8. + t^8.12 + 3*t^8.19 + 4*t^8.32 - 2*t^8.56 + 4*t^8.63 - t^8.68 + t^8.75 + 2*t^8.88 - t^4./y - t^5.44/y - t^5.56/y - t^6./y - t^6.44/y - t^6.56/y - (2*t^6.88)/y - t^7./y - t^7.88/y - (3*t^8.)/y - t^8.12/y + t^8.75/y - t^8.88/y - t^4.*y - t^5.44*y - t^5.56*y - t^6.*y - t^6.44*y - t^6.56*y - 2*t^6.88*y - t^7.*y - t^7.88*y - 3*t^8.*y - t^8.12*y + t^8.75*y - t^8.88*y t^2.44/g1 + g1*t^2.56 + (2*t^2.88)/g1^2 + t^3. + 3*t^4. + (2*t^4.88)/g1^2 + 2*t^5. + 2*g1^2*t^5.12 + (2*t^5.32)/g1^3 + (3*t^5.44)/g1 + g1*t^5.56 + (3*t^5.75)/g1^4 + t^5.88/g1^2 - g1^2*t^6.12 + (2*t^6.44)/g1 + 2*g1*t^6.56 + (5*t^6.88)/g1^2 + 2*t^7. - g1^2*t^7.12 + (2*t^7.32)/g1^3 + (3*t^7.44)/g1 + 3*g1*t^7.56 + 2*g1^3*t^7.68 + (4*t^7.75)/g1^4 + (5*t^7.88)/g1^2 + 10*t^8. + g1^2*t^8.12 + (3*t^8.19)/g1^5 + (4*t^8.32)/g1^3 - 2*g1*t^8.56 + (4*t^8.63)/g1^6 - g1^3*t^8.68 + t^8.75/g1^4 + (2*t^8.88)/g1^2 - t^4./y - t^5.44/(g1*y) - (g1*t^5.56)/y - t^6./y - t^6.44/(g1*y) - (g1*t^6.56)/y - (2*t^6.88)/(g1^2*y) - t^7./y - t^7.88/(g1^2*y) - (3*t^8.)/y - (g1^2*t^8.12)/y + t^8.75/(g1^4*y) - t^8.88/(g1^2*y) - t^4.*y - (t^5.44*y)/g1 - g1*t^5.56*y - t^6.*y - (t^6.44*y)/g1 - g1*t^6.56*y - (2*t^6.88*y)/g1^2 - t^7.*y - (t^7.88*y)/g1^2 - 3*t^8.*y - g1^2*t^8.12*y + (t^8.75*y)/g1^4 - (t^8.88*y)/g1^2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45013 SO5adj1nf2 $q_1^2q_2^2$ + $ \phi_1^2X_1$ + $ M_1\phi_1^2q_1$ + $ M_2\phi_1^2q_2$ 1.7917 1.8958 0.9451 [X:[1.3333], M:[0.8333, 0.8333], q:[0.5, 0.5], qb:[], phi:[0.3333]] 2*t^2.5 + 3*t^3. + 3*t^4. + 6*t^5. + 6*t^5.5 + 3*t^6. - t^4./y - (2*t^5.5)/y - t^6./y - t^4.*y - 2*t^5.5*y - t^6.*y detail {a: 43/24, c: 91/48, X1: 4/3, M1: 5/6, M2: 5/6, q1: 1/2, q2: 1/2, phi1: 1/3}