Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
4517 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{5}^{2}$ + ${ }M_{2}M_{3}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{7}$ + ${ }M_{2}M_{8}$ | 0.6973 | 0.8552 | 0.8154 | [M:[1.0177, 0.9468, 1.0532, 0.9113, 1.0, 0.9645, 0.9823, 1.0532], q:[0.4645, 0.5177], qb:[0.4823, 0.5709], phi:[0.4911]] | [M:[[2], [-6], [6], [-10], [0], [-4], [-2], [6]], q:[[-4], [2]], qb:[[-2], [8]], phi:[[-1]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{4}$, ${ }M_{6}$, ${ }M_{7}$, ${ }\phi_{1}^{2}$, ${ }M_{5}$, ${ }M_{3}$, ${ }M_{8}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{4}M_{7}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{6}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{5}M_{6}$, ${ }M_{7}^{2}$, ${ }M_{4}M_{8}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{5}M_{7}$, ${ }M_{5}\phi_{1}^{2}$ | ${}$ | -3 | t^2.734 + t^2.894 + 2*t^2.947 + t^3. + 2*t^3.16 + t^4.261 + t^4.314 + t^4.367 + t^4.42 + t^4.473 + 2*t^4.58 + t^4.633 + t^4.739 + t^4.899 + t^5.468 + t^5.628 + t^5.681 + t^5.787 + 5*t^5.894 + t^5.947 - 3*t^6. + t^6.053 + 2*t^6.106 - t^6.266 + 2*t^6.319 + t^6.995 + t^7.048 + t^7.101 + t^7.154 + 3*t^7.207 + 3*t^7.261 + 2*t^7.314 + 3*t^7.367 + t^7.42 + t^7.473 + 4*t^7.527 + 2*t^7.58 + 2*t^7.739 + t^7.793 + t^7.846 + 2*t^7.899 - t^7.952 + 2*t^8.059 + t^8.202 + t^8.362 + t^8.415 + 2*t^8.521 + t^8.574 + 3*t^8.628 + 2*t^8.681 - t^8.734 + t^8.787 + 6*t^8.84 - t^8.894 - 3*t^8.947 - t^4.473/y - t^7.207/y + t^7.314/y - t^7.367/y - t^7.42/y + t^7.527/y + t^7.58/y - t^7.633/y + t^7.739/y + t^8.628/y + (2*t^8.681)/y + t^8.734/y + (2*t^8.84)/y + (4*t^8.894)/y + (2*t^8.947)/y - t^4.473*y - t^7.207*y + t^7.314*y - t^7.367*y - t^7.42*y + t^7.527*y + t^7.58*y - t^7.633*y + t^7.739*y + t^8.628*y + 2*t^8.681*y + t^8.734*y + 2*t^8.84*y + 4*t^8.894*y + 2*t^8.947*y | t^2.734/g1^10 + t^2.894/g1^4 + (2*t^2.947)/g1^2 + t^3. + 2*g1^6*t^3.16 + t^4.261/g1^9 + t^4.314/g1^7 + t^4.367/g1^5 + t^4.42/g1^3 + t^4.473/g1 + 2*g1^3*t^4.58 + g1^5*t^4.633 + g1^9*t^4.739 + g1^15*t^4.899 + t^5.468/g1^20 + t^5.628/g1^14 + t^5.681/g1^12 + t^5.787/g1^8 + (5*t^5.894)/g1^4 + t^5.947/g1^2 - 3*t^6. + g1^2*t^6.053 + 2*g1^4*t^6.106 - g1^10*t^6.266 + 2*g1^12*t^6.319 + t^6.995/g1^19 + t^7.048/g1^17 + t^7.101/g1^15 + t^7.154/g1^13 + (3*t^7.207)/g1^11 + (3*t^7.261)/g1^9 + (2*t^7.314)/g1^7 + (3*t^7.367)/g1^5 + t^7.42/g1^3 + t^7.473/g1 + 4*g1*t^7.527 + 2*g1^3*t^7.58 + 2*g1^9*t^7.739 + g1^11*t^7.793 + g1^13*t^7.846 + 2*g1^15*t^7.899 - g1^17*t^7.952 + 2*g1^21*t^8.059 + t^8.202/g1^30 + t^8.362/g1^24 + t^8.415/g1^22 + (2*t^8.521)/g1^18 + t^8.574/g1^16 + (3*t^8.628)/g1^14 + (2*t^8.681)/g1^12 - t^8.734/g1^10 + t^8.787/g1^8 + (6*t^8.84)/g1^6 - t^8.894/g1^4 - (3*t^8.947)/g1^2 - t^4.473/(g1*y) - t^7.207/(g1^11*y) + t^7.314/(g1^7*y) - t^7.367/(g1^5*y) - t^7.42/(g1^3*y) + (g1*t^7.527)/y + (g1^3*t^7.58)/y - (g1^5*t^7.633)/y + (g1^9*t^7.739)/y + t^8.628/(g1^14*y) + (2*t^8.681)/(g1^12*y) + t^8.734/(g1^10*y) + (2*t^8.84)/(g1^6*y) + (4*t^8.894)/(g1^4*y) + (2*t^8.947)/(g1^2*y) - (t^4.473*y)/g1 - (t^7.207*y)/g1^11 + (t^7.314*y)/g1^7 - (t^7.367*y)/g1^5 - (t^7.42*y)/g1^3 + g1*t^7.527*y + g1^3*t^7.58*y - g1^5*t^7.633*y + g1^9*t^7.739*y + (t^8.628*y)/g1^14 + (2*t^8.681*y)/g1^12 + (t^8.734*y)/g1^10 + (2*t^8.84*y)/g1^6 + (4*t^8.894*y)/g1^4 + (2*t^8.947*y)/g1^2 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
2467 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{5}^{2}$ + ${ }M_{2}M_{3}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{7}$ | 0.7032 | 0.8665 | 0.8116 | [M:[1.0248, 0.9255, 1.0745, 0.8758, 1.0, 0.9503, 0.9752], q:[0.4503, 0.5248], qb:[0.4752, 0.5994], phi:[0.4876]] | t^2.627 + t^2.776 + t^2.851 + 2*t^2.925 + t^3. + t^3.224 + t^4.165 + t^4.239 + t^4.314 + t^4.388 + t^4.463 + 2*t^4.612 + t^4.686 + t^4.835 + t^5.059 + t^5.255 + t^5.404 + t^5.478 + 2*t^5.553 + t^5.627 + 3*t^5.702 + t^5.776 + 4*t^5.851 + t^5.925 - 2*t^6. - t^4.463/y - t^4.463*y | detail |