Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
45144 | SO5adj1nf2 | $M_1\phi_1^2q_1$ + $ M_2\phi_1^2q_2$ + $ M_3q_1q_2$ + $ M_4q_2^2$ | 1.8196 | 1.947 | 0.9345 | [X:[], M:[0.8438, 0.8044, 1.0552, 1.0158], q:[0.4527, 0.4921], qb:[], phi:[0.3517]] | [X:[], M:[[-1, 2], [2, -1], [-3, -3], [0, -6]], q:[[3, 0], [0, 3]], qb:[], phi:[[-1, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$\phi_1^2$, $ M_2$, $ M_1$, $ q_1^2$, $ M_4$, $ M_3$, $ \phi_1q_1q_2$, $ \phi_1^4$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ M_2^2$, $ \phi_1^2q_1^2$, $ M_1M_2$, $ \phi_1^2q_1q_2$, $ M_1^2$, $ \phi_1^2q_2^2$, $ M_2q_1^2$, $ M_4\phi_1^2$, $ M_1q_1^2$, $ M_3\phi_1^2$, $ q_1^4$, $ M_2M_4$, $ M_2M_3$, $ M_1M_4$, $ M_1M_3$, $ M_4q_1^2$ | $2\phi_1^3q_1q_2$ | 0 | t^2.11 + t^2.41 + t^2.53 + t^2.72 + t^3.05 + t^3.17 + t^3.89 + 2*t^4.22 + t^4.52 + t^4.64 + 3*t^4.83 + 2*t^4.94 + 2*t^5.06 + t^5.13 + t^5.16 + t^5.25 + t^5.28 + t^5.43 + t^5.46 + 2*t^5.58 + t^5.7 + t^5.76 + t^6.09 - t^6.12 + t^6.21 + t^6.3 + 3*t^6.33 + t^6.42 + t^6.61 + t^6.63 + t^6.75 + 4*t^6.94 + 2*t^7.06 + t^7.17 + 3*t^7.24 + 2*t^7.27 + 4*t^7.36 + 2*t^7.39 + 3*t^7.48 + 3*t^7.54 + t^7.57 + 2*t^7.59 + 2*t^7.66 + 2*t^7.69 + 2*t^7.78 + t^7.81 + t^7.85 + 3*t^7.87 + t^7.96 + 3*t^7.99 + 4*t^8.11 + t^8.15 + t^8.18 + t^8.21 + t^8.3 + t^8.32 - t^8.41 + 4*t^8.44 + t^8.48 + t^8.51 - 2*t^8.53 + 2*t^8.63 - t^8.65 + t^8.72 + 3*t^8.74 + t^8.81 + 2*t^8.86 + t^8.95 - t^4.06/y - t^5.41/y - t^5.53/y - (2*t^6.17)/y - t^6.47/y - t^6.59/y - t^6.77/y - t^7.1/y - t^7.22/y - t^7.94/y - t^8.06/y + t^8.16/y - (2*t^8.28)/y - t^8.58/y - t^8.7/y + t^8.76/y - (2*t^8.88)/y - t^4.06*y - t^5.41*y - t^5.53*y - 2*t^6.17*y - t^6.47*y - t^6.59*y - t^6.77*y - t^7.1*y - t^7.22*y - t^7.94*y - t^8.06*y + t^8.16*y - 2*t^8.28*y - t^8.58*y - t^8.7*y + t^8.76*y - 2*t^8.88*y | t^2.11/(g1^2*g2^2) + (g1^2*t^2.41)/g2 + (g2^2*t^2.53)/g1 + g1^6*t^2.72 + t^3.05/g2^6 + t^3.17/(g1^3*g2^3) + g1^2*g2^2*t^3.89 + (2*t^4.22)/(g1^4*g2^4) + t^4.52/g2^3 + t^4.64/g1^3 + (3*g1^4*t^4.83)/g2^2 + 2*g1*g2*t^4.94 + (2*g2^4*t^5.06)/g1^2 + (g1^8*t^5.13)/g2 + t^5.16/(g1^2*g2^8) + g1^5*g2^2*t^5.25 + t^5.28/(g1^5*g2^5) + g1^12*t^5.43 + (g1^2*t^5.46)/g2^7 + (2*t^5.58)/(g1*g2^4) + t^5.7/(g1^4*g2) + (g1^6*t^5.76)/g2^6 + t^6.09/g2^12 - (g2^3*t^6.12)/g1^3 + t^6.21/(g1^3*g2^9) + g1^4*g2*t^6.3 + (3*t^6.33)/(g1^6*g2^6) + g1*g2^4*t^6.42 + g1^8*g2^2*t^6.61 + t^6.63/(g1^2*g2^5) + t^6.75/(g1^5*g2^2) + (4*g1^2*t^6.94)/g2^4 + (2*t^7.06)/(g1*g2) + (g2^2*t^7.17)/g1^4 + (3*g1^6*t^7.24)/g2^3 + (2*t^7.27)/(g1^4*g2^10) + 4*g1^3*t^7.36 + (2*t^7.39)/(g1^7*g2^7) + 3*g2^3*t^7.48 + (3*g1^10*t^7.54)/g2^2 + t^7.57/g2^9 + (2*g2^6*t^7.59)/g1^3 + 2*g1^7*g2*t^7.66 + (2*t^7.69)/(g1^3*g2^6) + 2*g1^4*g2^4*t^7.78 + t^7.81/(g1^6*g2^3) + (g1^14*t^7.85)/g2 + (3*g1^4*t^7.87)/g2^8 + g1^11*g2^2*t^7.96 + (3*g1*t^7.99)/g2^5 + (4*t^8.11)/(g1^2*g2^2) + g1^18*t^8.15 + (g1^8*t^8.18)/g2^7 + t^8.21/(g1^2*g2^14) + (g1^5*t^8.3)/g2^4 + t^8.32/(g1^5*g2^11) - (g1^2*t^8.41)/g2 + (4*t^8.44)/(g1^8*g2^8) + (g1^12*t^8.48)/g2^6 + (g1^2*t^8.51)/g2^13 - (2*g2^2*t^8.53)/g1 + (2*t^8.63)/(g1*g2^10) - (g2^5*t^8.65)/g1^4 + g1^6*t^8.72 + (3*t^8.74)/(g1^4*g2^7) + (g1^6*t^8.81)/g2^12 + (2*t^8.86)/(g1^7*g2^4) + g2^6*t^8.95 - t^4.06/(g1*g2*y) - (g1^2*t^5.41)/(g2*y) - (g2^2*t^5.53)/(g1*y) - (2*t^6.17)/(g1^3*g2^3*y) - (g1*t^6.47)/(g2^2*y) - (g2*t^6.59)/(g1^2*y) - (g1^5*t^6.77)/(g2*y) - t^7.1/(g1*g2^7*y) - t^7.22/(g1^4*g2^4*y) - (g1*g2*t^7.94)/y - (g2^4*t^8.06)/(g1^2*y) + t^8.16/(g1^2*g2^8*y) - (2*t^8.28)/(g1^5*g2^5*y) - t^8.58/(g1*g2^4*y) - t^8.7/(g1^4*g2*y) + (g1^6*t^8.76)/(g2^6*y) - (2*g1^3*t^8.88)/(g2^3*y) - (t^4.06*y)/(g1*g2) - (g1^2*t^5.41*y)/g2 - (g2^2*t^5.53*y)/g1 - (2*t^6.17*y)/(g1^3*g2^3) - (g1*t^6.47*y)/g2^2 - (g2*t^6.59*y)/g1^2 - (g1^5*t^6.77*y)/g2 - (t^7.1*y)/(g1*g2^7) - (t^7.22*y)/(g1^4*g2^4) - g1*g2*t^7.94*y - (g2^4*t^8.06*y)/g1^2 + (t^8.16*y)/(g1^2*g2^8) - (2*t^8.28*y)/(g1^5*g2^5) - (t^8.58*y)/(g1*g2^4) - (t^8.7*y)/(g1^4*g2) + (g1^6*t^8.76*y)/g2^6 - (2*g1^3*t^8.88*y)/g2^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
45076 | SO5adj1nf2 | $M_1\phi_1^2q_1$ + $ M_2\phi_1^2q_2$ + $ M_3q_1q_2$ | 1.8242 | 1.9545 | 0.9334 | [X:[], M:[0.8194, 0.8194, 1.0835], q:[0.4582, 0.4582], qb:[], phi:[0.3612]] | t^2.17 + 2*t^2.46 + 2*t^2.75 + t^3.25 + t^3.83 + 2*t^4.33 + 2*t^4.63 + 8*t^4.92 + 4*t^5.21 + t^5.42 + 3*t^5.5 + 2*t^5.71 - t^4.08/y - (2*t^5.46)/y - t^4.08*y - 2*t^5.46*y | detail |