Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
44949 SO5adj1nf2 $M_1q_1q_2$ + $ \phi_1^2q_1^2$ + $ \phi_1^2X_1$ 1.647 1.7283 0.953 [X:[1.3498], M:[0.9753], q:[0.6749, 0.3498], qb:[], phi:[0.3251]] [X:[[2]], M:[[-3]], q:[[1], [2]], qb:[], phi:[[-1]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$q_2^2$, $ M_1$, $ \phi_1^2q_2$, $ \phi_1^4$, $ \phi_1^2q_1$, $ q_1^2$, $ \phi_1q_1q_2$, $ \phi_1^2q_2^2$, $ X_1$, $ q_2^4$, $ \phi_1^2q_1q_2$, $ \phi_1^2q_2^3$, $ M_1^2$ $\phi_1^3q_1q_2$, $ 2\phi_1^4q_2^2$ 1 t^2.1 + t^2.93 + t^3. + t^3.9 + t^3.98 + 4*t^4.05 + t^4.2 + t^5.02 + t^5.1 + t^5.85 + t^6. + t^6.07 + 4*t^6.15 + t^6.3 + t^6.83 + t^6.9 + 2*t^6.98 + 4*t^7.05 + t^7.12 + t^7.2 + t^7.8 + t^7.88 + 3*t^7.95 + 3*t^8.02 + 9*t^8.1 + t^8.17 + 4*t^8.25 + t^8.39 + t^8.78 - t^3.98/y - t^5.02/y - t^5.93/y - t^6./y - t^6.07/y - t^6.9/y - t^6.98/y - t^7.12/y - t^7.88/y - t^7.95/y - (3*t^8.02)/y - t^8.17/y - t^8.85/y - t^3.98*y - t^5.02*y - t^5.93*y - t^6.*y - t^6.07*y - t^6.9*y - t^6.98*y - t^7.12*y - t^7.88*y - t^7.95*y - 3*t^8.02*y - t^8.17*y - t^8.85*y g1^4*t^2.1 + t^2.93/g1^3 + t^3. + t^3.9/g1^4 + t^3.98/g1 + 4*g1^2*t^4.05 + g1^8*t^4.2 + g1*t^5.02 + g1^4*t^5.1 + t^5.85/g1^6 + t^6. + g1^3*t^6.07 + 4*g1^6*t^6.15 + g1^12*t^6.3 + t^6.83/g1^7 + t^6.9/g1^4 + (2*t^6.98)/g1 + 4*g1^2*t^7.05 + g1^5*t^7.12 + g1^8*t^7.2 + t^7.8/g1^8 + t^7.88/g1^5 + (3*t^7.95)/g1^2 + 3*g1*t^8.02 + 9*g1^4*t^8.1 + g1^7*t^8.17 + 4*g1^10*t^8.25 + g1^16*t^8.39 + t^8.78/g1^9 - t^3.98/(g1*y) - (g1*t^5.02)/y - t^5.93/(g1^3*y) - t^6./y - (g1^3*t^6.07)/y - t^6.9/(g1^4*y) - t^6.98/(g1*y) - (g1^5*t^7.12)/y - t^7.88/(g1^5*y) - t^7.95/(g1^2*y) - (3*g1*t^8.02)/y - (g1^7*t^8.17)/y - t^8.85/(g1^6*y) - (t^3.98*y)/g1 - g1*t^5.02*y - (t^5.93*y)/g1^3 - t^6.*y - g1^3*t^6.07*y - (t^6.9*y)/g1^4 - (t^6.98*y)/g1 - g1^5*t^7.12*y - (t^7.88*y)/g1^5 - (t^7.95*y)/g1^2 - 3*g1*t^8.02*y - g1^7*t^8.17*y - (t^8.85*y)/g1^6


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45095 $M_1q_1q_2$ + $ \phi_1^2q_1^2$ + $ \phi_1^2X_1$ + $ M_2\phi_1^4$ 1.6676 1.7685 0.943 [X:[1.3465], M:[0.9803, 0.6929], q:[0.6732, 0.3465], qb:[], phi:[0.3268]] 2*t^2.08 + t^2.94 + t^3. + t^3.98 + 4*t^4.04 + 3*t^4.16 + 2*t^5.02 + 2*t^5.08 + t^5.88 - t^3.98/y - t^5.02/y - t^5.94/y - t^6./y - t^3.98*y - t^5.02*y - t^5.94*y - t^6.*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
44923 SO5adj1nf2 $M_1q_1q_2$ 1.7938 1.9011 0.9435 [X:[], M:[1.0769], q:[0.4615, 0.4615], qb:[], phi:[0.359]] t^2.15 + 2*t^2.77 + t^3.23 + 2*t^3.54 + t^3.85 + 2*t^4.31 + 5*t^4.92 + t^5.38 + 3*t^5.54 + 2*t^5.69 - t^4.08/y - (2*t^5.46)/y - t^4.08*y - 2*t^5.46*y detail {a: 14551/8112, c: 7711/4056, M1: 14/13, q1: 6/13, q2: 6/13, phi1: 14/39}