Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
44920 | SO5adj1nf2 | $M_1\phi_1q_1q_2$ | 1.8217 | 1.9527 | 0.9329 | [X:[], M:[0.7308], q:[0.4519, 0.4519], qb:[], phi:[0.3654]] | [X:[], M:[[-2, -2]], q:[[3, 0], [0, 3]], qb:[], phi:[[-1, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ \phi_1^2$, $ q_1^2$, $ q_1q_2$, $ q_2^2$, $ \phi_1^2q_1$, $ \phi_1^2q_2$, $ M_1^2$, $ M_1\phi_1^2$, $ \phi_1^4$, $ M_1q_1^2$, $ \phi_1^2q_1^2$, $ M_1q_1q_2$, $ \phi_1^2q_1q_2$, $ M_1q_2^2$, $ \phi_1^2q_2^2$, $ q_1^4$, $ q_1^3q_2$, $ q_1^2q_2^2$, $ q_1q_2^3$, $ q_2^4$, $ M_1\phi_1^2q_1$, $ \phi_1^4q_1$, $ M_1\phi_1^2q_2$, $ \phi_1^4q_2$ | $\phi_1^3q_1q_2$ | -3 | 2*t^2.19 + 3*t^2.71 + 2*t^3.55 + 4*t^4.38 + 9*t^4.9 + 6*t^5.42 + 4*t^5.74 - 3*t^6. + 6*t^6.26 + 6*t^6.58 - 2*t^6.84 + 18*t^7.1 + 20*t^7.62 + 8*t^7.93 + 10*t^8.13 - 9*t^8.19 + 16*t^8.45 - 12*t^8.71 + 9*t^8.77 + 12*t^8.97 - t^4.1/y - (2*t^5.45)/y - (3*t^6.29)/y - (3*t^6.81)/y + t^7.38/y - (6*t^7.64)/y + (7*t^7.9)/y - (6*t^8.16)/y + (3*t^8.42)/y - (6*t^8.48)/y + (6*t^8.74)/y - t^4.1*y - 2*t^5.45*y - 3*t^6.29*y - 3*t^6.81*y + t^7.38*y - 6*t^7.64*y + 7*t^7.9*y - 6*t^8.16*y + 3*t^8.42*y - 6*t^8.48*y + 6*t^8.74*y | (2*t^2.19)/(g1^2*g2^2) + g1^6*t^2.71 + g1^3*g2^3*t^2.71 + g2^6*t^2.71 + (g1*t^3.55)/g2^2 + (g2*t^3.55)/g1^2 + (4*t^4.38)/(g1^4*g2^4) + (3*g1^4*t^4.9)/g2^2 + 3*g1*g2*t^4.9 + (3*g2^4*t^4.9)/g1^2 + g1^12*t^5.42 + g1^9*g2^3*t^5.42 + 2*g1^6*g2^6*t^5.42 + g1^3*g2^9*t^5.42 + g2^12*t^5.42 + (2*t^5.74)/(g1*g2^4) + (2*t^5.74)/(g1^4*g2) - t^6. - (g1^3*t^6.)/g2^3 - (g2^3*t^6.)/g1^3 + (g1^7*t^6.26)/g2^2 + 2*g1^4*g2*t^6.26 + 2*g1*g2^4*t^6.26 + (g2^7*t^6.26)/g1^2 + (6*t^6.58)/(g1^6*g2^6) - t^6.84/(g1^2*g2^5) - t^6.84/(g1^5*g2^2) + (6*g1^2*t^7.1)/g2^4 + (6*t^7.1)/(g1*g2) + (6*g2^2*t^7.1)/g1^4 + (3*g1^10*t^7.62)/g2^2 + 4*g1^7*g2*t^7.62 + 6*g1^4*g2^4*t^7.62 + 4*g1*g2^7*t^7.62 + (3*g2^10*t^7.62)/g1^2 + (4*t^7.93)/(g1^3*g2^6) + (4*t^7.93)/(g1^6*g2^3) + g1^18*t^8.13 + g1^15*g2^3*t^8.13 + 2*g1^12*g2^6*t^8.13 + 2*g1^9*g2^9*t^8.13 + 2*g1^6*g2^12*t^8.13 + g1^3*g2^15*t^8.13 + g2^18*t^8.13 - (3*g1*t^8.19)/g2^5 - (3*t^8.19)/(g1^2*g2^2) - (3*g2*t^8.19)/g1^5 + (3*g1^5*t^8.45)/g2^4 + (5*g1^2*t^8.45)/g2 + (5*g2^2*t^8.45)/g1 + (3*g2^5*t^8.45)/g1^4 - 3*g1^6*t^8.71 - (g1^9*t^8.71)/g2^3 - 4*g1^3*g2^3*t^8.71 - 3*g2^6*t^8.71 - (g2^9*t^8.71)/g1^3 + (9*t^8.77)/(g1^8*g2^8) + (g1^13*t^8.97)/g2^2 + 2*g1^10*g2*t^8.97 + 3*g1^7*g2^4*t^8.97 + 3*g1^4*g2^7*t^8.97 + 2*g1*g2^10*t^8.97 + (g2^13*t^8.97)/g1^2 - t^4.1/(g1*g2*y) - (g1^2*t^5.45)/(g2*y) - (g2^2*t^5.45)/(g1*y) - (3*t^6.29)/(g1^3*g2^3*y) - (g1^5*t^6.81)/(g2*y) - (g1^2*g2^2*t^6.81)/y - (g2^5*t^6.81)/(g1*y) + t^7.38/(g1^4*g2^4*y) - (3*t^7.64)/(g1^3*y) - (3*t^7.64)/(g2^3*y) + (2*g1^4*t^7.9)/(g2^2*y) + (3*g1*g2*t^7.9)/y + (2*g2^4*t^7.9)/(g1^2*y) - (g1^8*t^8.16)/(g2*y) - (2*g1^5*g2^2*t^8.16)/y - (2*g1^2*g2^5*t^8.16)/y - (g2^8*t^8.16)/(g1*y) + (g1^9*g2^3*t^8.42)/y + (g1^6*g2^6*t^8.42)/y + (g1^3*g2^9*t^8.42)/y - (6*t^8.48)/(g1^5*g2^5*y) + (3*t^8.74)/(g1*g2^4*y) + (3*t^8.74)/(g1^4*g2*y) - (t^4.1*y)/(g1*g2) - (g1^2*t^5.45*y)/g2 - (g2^2*t^5.45*y)/g1 - (3*t^6.29*y)/(g1^3*g2^3) - (g1^5*t^6.81*y)/g2 - g1^2*g2^2*t^6.81*y - (g2^5*t^6.81*y)/g1 + (t^7.38*y)/(g1^4*g2^4) - (3*t^7.64*y)/g1^3 - (3*t^7.64*y)/g2^3 + (2*g1^4*t^7.9*y)/g2^2 + 3*g1*g2*t^7.9*y + (2*g2^4*t^7.9*y)/g1^2 - (g1^8*t^8.16*y)/g2 - 2*g1^5*g2^2*t^8.16*y - 2*g1^2*g2^5*t^8.16*y - (g2^8*t^8.16*y)/g1 + g1^9*g2^3*t^8.42*y + g1^6*g2^6*t^8.42*y + g1^3*g2^9*t^8.42*y - (6*t^8.48*y)/(g1^5*g2^5) + (3*t^8.74*y)/(g1*g2^4) + (3*t^8.74*y)/(g1^4*g2) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
44947 | $M_1\phi_1q_1q_2$ + $ \phi_1^4q_1$ | 1.8087 | 1.9438 | 0.9305 | [X:[], M:[0.7752], q:[0.4496, 0.3876], qb:[], phi:[0.3876]] | 3*t^2.33 + t^2.51 + t^2.7 + t^3.49 + t^3.67 + 8*t^4.65 + 4*t^4.84 + 5*t^5.02 + t^5.21 + t^5.39 + 2*t^5.81 + 3*t^6. - t^4.16/y - t^5.33/y - t^5.51/y - t^4.16*y - t^5.33*y - t^5.51*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
44917 | SO5adj1nf2 | . | 1.802 | 1.9168 | 0.9401 | [X:[], M:[], q:[0.4488, 0.4488], qb:[], phi:[0.3674]] | t^2.2 + 3*t^2.69 + 2*t^3.55 + t^3.8 + 2*t^4.41 + 6*t^4.9 + 6*t^5.39 + 2*t^5.76 - 2*t^6. - t^4.1/y - (2*t^5.45)/y - t^4.1*y - 2*t^5.45*y | detail |