Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
4464 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_4\phi_1q_2^2$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_6\phi_1q_2^2$ + $ M_7q_1\tilde{q}_2$ + $ M_8\phi_1\tilde{q}_1\tilde{q}_2$ 0.678 0.928 0.7306 [X:[], M:[0.9252, 1.2244, 0.7756, 0.7756, 0.687, 0.7756, 0.8366, 0.687], q:[0.7313, 0.3435], qb:[0.3435, 0.4321], phi:[0.5374]] [X:[], M:[[4], [-12], [12], [12], [-10], [12], [-18], [-10]], q:[[1], [-5]], qb:[[-5], [17]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_5$, $ M_8$, $ q_2\tilde{q}_1$, $ M_3$, $ M_4$, $ M_6$, $ q_2\tilde{q}_2$, $ M_7$, $ M_1$, $ \phi_1^2$, $ q_1\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ M_5^2$, $ M_5M_8$, $ M_8^2$, $ M_5q_2\tilde{q}_1$, $ M_8q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ \phi_1\tilde{q}_2^2$, $ M_3M_5$, $ M_4M_5$, $ M_5M_6$, $ M_3M_8$, $ M_4M_8$, $ M_6M_8$, $ M_3q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_2$, $ M_8q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_5M_7$, $ M_7M_8$, $ M_7q_2\tilde{q}_1$, $ M_3^2$, $ M_3M_4$, $ M_4^2$, $ M_3M_6$, $ M_4M_6$, $ M_6^2$, $ M_3q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ M_6q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_1M_5$, $ M_3M_7$, $ M_4M_7$, $ M_6M_7$, $ M_1M_8$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_1$, $ M_7q_2\tilde{q}_2$, $ M_7^2$, $ M_1M_3$, $ M_1M_4$, $ M_1M_6$, $ \phi_1q_1\tilde{q}_2$, $ M_1M_7$, $ M_5\phi_1^2$, $ M_8\phi_1^2$, $ M_5q_1\tilde{q}_1$, $ M_8q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ q_1q_2\tilde{q}_1^2$, $ M_1^2$, $ M_3\phi_1^2$, $ M_4\phi_1^2$, $ M_6\phi_1^2$, $ M_3q_1\tilde{q}_1$, $ M_4q_1\tilde{q}_1$, $ M_6q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_2$, $ M_7\phi_1^2$, $ M_7q_1\tilde{q}_1$, $ M_5\phi_1\tilde{q}_1^2$, $ M_8\phi_1\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_1^3$ $M_3\phi_1\tilde{q}_1^2$, $ M_4\phi_1\tilde{q}_1^2$, $ M_6\phi_1\tilde{q}_1^2$ -1 3*t^2.06 + 4*t^2.33 + t^2.51 + t^2.78 + 2*t^3.22 + t^3.67 + 6*t^4.12 + t^4.2 + 12*t^4.39 + 3*t^4.57 + 10*t^4.65 + 7*t^4.84 + t^5.02 + 4*t^5.1 + 7*t^5.29 + 8*t^5.55 + 3*t^5.73 - t^6. + 11*t^6.18 + 23*t^6.45 + 4*t^6.53 + 6*t^6.63 + 28*t^6.71 + 17*t^6.9 + 20*t^6.98 + 3*t^7.08 + 16*t^7.16 + 17*t^7.35 + 10*t^7.43 + t^7.53 + 20*t^7.61 + 7*t^7.8 + 15*t^7.88 - 3*t^8.06 + 18*t^8.24 - 13*t^8.33 + t^8.41 + 34*t^8.51 + 11*t^8.69 + 42*t^8.78 + 10*t^8.86 + 27*t^8.96 - t^4.61/y - (2*t^6.67)/y - (2*t^6.94)/y + (2*t^7.12)/y + (12*t^7.39)/y + (3*t^7.57)/y + (6*t^7.65)/y + (7*t^7.84)/y + (5*t^8.1)/y + (9*t^8.29)/y + (10*t^8.55)/y + (2*t^8.73)/y - t^4.61*y - 2*t^6.67*y - 2*t^6.94*y + 2*t^7.12*y + 12*t^7.39*y + 3*t^7.57*y + 6*t^7.65*y + 7*t^7.84*y + 5*t^8.1*y + 9*t^8.29*y + 10*t^8.55*y + 2*t^8.73*y (3*t^2.06)/g1^10 + 4*g1^12*t^2.33 + t^2.51/g1^18 + g1^4*t^2.78 + (2*t^3.22)/g1^4 + t^3.67/g1^12 + (6*t^4.12)/g1^20 + g1^32*t^4.2 + 12*g1^2*t^4.39 + (3*t^4.57)/g1^28 + 10*g1^24*t^4.65 + (7*t^4.84)/g1^6 + t^5.02/g1^36 + 4*g1^16*t^5.1 + (7*t^5.29)/g1^14 + 8*g1^8*t^5.55 + (3*t^5.73)/g1^22 - t^6. + (11*t^6.18)/g1^30 + (23*t^6.45)/g1^8 + 4*g1^44*t^6.53 + (6*t^6.63)/g1^38 + 28*g1^14*t^6.71 + (17*t^6.9)/g1^16 + 20*g1^36*t^6.98 + (3*t^7.08)/g1^46 + 16*g1^6*t^7.16 + (17*t^7.35)/g1^24 + 10*g1^28*t^7.43 + t^7.53/g1^54 + (20*t^7.61)/g1^2 + (7*t^7.8)/g1^32 + 15*g1^20*t^7.88 - (3*t^8.06)/g1^10 + (18*t^8.24)/g1^40 - 13*g1^12*t^8.33 + g1^64*t^8.41 + (34*t^8.51)/g1^18 + (11*t^8.69)/g1^48 + 42*g1^4*t^8.78 + 10*g1^56*t^8.86 + (27*t^8.96)/g1^26 - t^4.61/(g1^2*y) - (2*t^6.67)/(g1^12*y) - (2*g1^10*t^6.94)/y + (2*t^7.12)/(g1^20*y) + (12*g1^2*t^7.39)/y + (3*t^7.57)/(g1^28*y) + (6*g1^24*t^7.65)/y + (7*t^7.84)/(g1^6*y) + (5*g1^16*t^8.1)/y + (9*t^8.29)/(g1^14*y) + (10*g1^8*t^8.55)/y + (2*t^8.73)/(g1^22*y) - (t^4.61*y)/g1^2 - (2*t^6.67*y)/g1^12 - 2*g1^10*t^6.94*y + (2*t^7.12*y)/g1^20 + 12*g1^2*t^7.39*y + (3*t^7.57*y)/g1^28 + 6*g1^24*t^7.65*y + (7*t^7.84*y)/g1^6 + 5*g1^16*t^8.1*y + (9*t^8.29*y)/g1^14 + 10*g1^8*t^8.55*y + (2*t^8.73*y)/g1^22


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2421 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_4\phi_1q_2^2$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_6\phi_1q_2^2$ + $ M_7q_1\tilde{q}_2$ 0.6573 0.8878 0.7404 [X:[], M:[0.9247, 1.2259, 0.7741, 0.7741, 0.6882, 0.7741, 0.8388], q:[0.7312, 0.3441], qb:[0.3441, 0.43], phi:[0.5376]] 2*t^2.06 + 4*t^2.32 + t^2.52 + t^2.77 + 2*t^3.23 + t^3.68 + t^3.94 + 3*t^4.13 + t^4.19 + 8*t^4.39 + 2*t^4.58 + 10*t^4.64 + 6*t^4.84 + t^5.03 + 4*t^5.1 + 5*t^5.29 + 8*t^5.55 + 2*t^5.74 + t^6. - t^4.61/y - t^4.61*y detail