Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
4456 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1^2$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_4\phi_1q_2^2$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_6\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_7q_1\tilde{q}_2$ + $ M_2M_8$ 0.6671 0.9079 0.7348 [X:[], M:[0.9263, 1.2211, 0.9263, 0.7789, 0.6842, 0.6842, 0.8316, 0.7789], q:[0.7316, 0.3421], qb:[0.3421, 0.4368], phi:[0.5368]] [X:[], M:[[4], [-12], [4], [12], [-10], [-10], [-18], [12]], q:[[1], [-5]], qb:[[-5], [17]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_5$, $ M_6$, $ q_2\tilde{q}_1$, $ M_4$, $ M_8$, $ q_2\tilde{q}_2$, $ M_7$, $ M_1$, $ M_3$, $ q_1\tilde{q}_1$, $ \phi_1q_2^2$, $ \phi_1\tilde{q}_1^2$, $ M_5^2$, $ M_5M_6$, $ M_6^2$, $ M_5q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ \phi_1\tilde{q}_2^2$, $ M_4M_5$, $ M_4M_6$, $ M_5M_8$, $ M_6M_8$, $ M_4q_2\tilde{q}_1$, $ M_8q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_2$, $ M_6q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_5M_7$, $ M_6M_7$, $ M_7q_2\tilde{q}_1$, $ M_4^2$, $ M_4M_8$, $ M_8^2$, $ M_4q_2\tilde{q}_2$, $ M_8q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_1M_5$, $ M_3M_5$, $ M_1M_6$, $ M_3M_6$, $ M_4M_7$, $ M_7M_8$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_1$, $ M_3q_2\tilde{q}_1$, $ M_7q_2\tilde{q}_2$, $ M_7^2$, $ M_1M_4$, $ M_3M_4$, $ M_1M_8$, $ M_3M_8$, $ \phi_1q_1\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ M_1M_7$, $ M_3M_7$, $ M_5q_1\tilde{q}_1$, $ M_6q_1\tilde{q}_1$, $ q_1q_2\tilde{q}_1^2$, $ M_1^2$, $ M_1M_3$, $ M_3^2$, $ M_4q_1\tilde{q}_1$, $ M_8q_1\tilde{q}_1$, $ M_5\phi_1q_2^2$, $ M_6\phi_1q_2^2$, $ M_7q_1\tilde{q}_1$, $ \phi_1q_2^3\tilde{q}_1$, $ M_5\phi_1\tilde{q}_1^2$, $ M_6\phi_1\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_1^3$ $M_8\phi_1q_2^2$, $ M_3q_1\tilde{q}_1$, $ M_4\phi_1\tilde{q}_1^2$, $ M_8\phi_1\tilde{q}_1^2$, $ \phi_1q_2^3\tilde{q}_2$ 1 3*t^2.05 + 3*t^2.34 + t^2.49 + 2*t^2.78 + t^3.22 + 2*t^3.66 + 6*t^4.11 + t^4.23 + 9*t^4.39 + 3*t^4.55 + 6*t^4.67 + 9*t^4.83 + t^4.99 + 6*t^5.12 + 5*t^5.27 + 5*t^5.56 + 5*t^5.72 + t^6. + 12*t^6.16 + 18*t^6.44 + 3*t^6.57 + 6*t^6.6 + 16*t^6.73 + 20*t^6.88 + 11*t^7.01 + 3*t^7.04 + 18*t^7.17 + 15*t^7.33 + 11*t^7.45 + t^7.48 + 13*t^7.61 + 11*t^7.77 + 8*t^7.89 + 2*t^8.05 + 20*t^8.21 - 4*t^8.34 + t^8.46 + 27*t^8.49 + 12*t^8.65 + 17*t^8.78 + 6*t^8.9 + 34*t^8.94 - t^4.61/y - (2*t^6.66)/y - t^6.95/y + (2*t^7.11)/y + (8*t^7.39)/y + (3*t^7.55)/y + (3*t^7.67)/y + (10*t^7.83)/y + (7*t^8.12)/y + (6*t^8.27)/y + (6*t^8.56)/y + (4*t^8.72)/y - t^4.61*y - 2*t^6.66*y - t^6.95*y + 2*t^7.11*y + 8*t^7.39*y + 3*t^7.55*y + 3*t^7.67*y + 10*t^7.83*y + 7*t^8.12*y + 6*t^8.27*y + 6*t^8.56*y + 4*t^8.72*y (3*t^2.05)/g1^10 + 3*g1^12*t^2.34 + t^2.49/g1^18 + 2*g1^4*t^2.78 + t^3.22/g1^4 + (2*t^3.66)/g1^12 + (6*t^4.11)/g1^20 + g1^32*t^4.23 + 9*g1^2*t^4.39 + (3*t^4.55)/g1^28 + 6*g1^24*t^4.67 + (9*t^4.83)/g1^6 + t^4.99/g1^36 + 6*g1^16*t^5.12 + (5*t^5.27)/g1^14 + 5*g1^8*t^5.56 + (5*t^5.72)/g1^22 + t^6. + (12*t^6.16)/g1^30 + (18*t^6.44)/g1^8 + 3*g1^44*t^6.57 + (6*t^6.6)/g1^38 + 16*g1^14*t^6.73 + (20*t^6.88)/g1^16 + 11*g1^36*t^7.01 + (3*t^7.04)/g1^46 + 18*g1^6*t^7.17 + (15*t^7.33)/g1^24 + 11*g1^28*t^7.45 + t^7.48/g1^54 + (13*t^7.61)/g1^2 + (11*t^7.77)/g1^32 + 8*g1^20*t^7.89 + (2*t^8.05)/g1^10 + (20*t^8.21)/g1^40 - 4*g1^12*t^8.34 + g1^64*t^8.46 + (27*t^8.49)/g1^18 + (12*t^8.65)/g1^48 + 17*g1^4*t^8.78 + 6*g1^56*t^8.9 + (34*t^8.94)/g1^26 - t^4.61/(g1^2*y) - (2*t^6.66)/(g1^12*y) - (g1^10*t^6.95)/y + (2*t^7.11)/(g1^20*y) + (8*g1^2*t^7.39)/y + (3*t^7.55)/(g1^28*y) + (3*g1^24*t^7.67)/y + (10*t^7.83)/(g1^6*y) + (7*g1^16*t^8.12)/y + (6*t^8.27)/(g1^14*y) + (6*g1^8*t^8.56)/y + (4*t^8.72)/(g1^22*y) - (t^4.61*y)/g1^2 - (2*t^6.66*y)/g1^12 - g1^10*t^6.95*y + (2*t^7.11*y)/g1^20 + 8*g1^2*t^7.39*y + (3*t^7.55*y)/g1^28 + 3*g1^24*t^7.67*y + (10*t^7.83*y)/g1^6 + 7*g1^16*t^8.12*y + (6*t^8.27*y)/g1^14 + 6*g1^8*t^8.56*y + (4*t^8.72*y)/g1^22


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2412 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1^2$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_4\phi_1q_2^2$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_6\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_7q_1\tilde{q}_2$ 0.6496 0.8775 0.7403 [X:[], M:[0.9292, 1.2124, 0.9292, 0.7876, 0.677, 0.677, 0.8186], q:[0.7323, 0.3385], qb:[0.3385, 0.4491], phi:[0.5354]] 3*t^2.03 + 2*t^2.36 + t^2.46 + 2*t^2.79 + t^3.21 + 3*t^3.64 + 6*t^4.06 + t^4.3 + 6*t^4.39 + 3*t^4.49 + 3*t^4.73 + 8*t^4.82 + t^4.91 + 4*t^5.15 + 5*t^5.24 + 4*t^5.58 + 8*t^5.67 + t^6. - t^4.61/y - t^4.61*y detail