Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
4436 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_6\phi_1q_2\tilde{q}_2$ + $ M_7q_1\tilde{q}_2$ + $ M_8q_1\tilde{q}_1$ | 0.6656 | 0.8837 | 0.7532 | [X:[], M:[0.9783, 1.0651, 1.0217, 0.9349, 0.7446, 0.7446, 0.788, 0.788], q:[0.7446, 0.2771], qb:[0.4674, 0.4674], phi:[0.5109]] | [X:[], M:[[4], [-12], [-4], [12], [1], [1], [-7], [-7]], q:[[1], [-5]], qb:[[6], [6]], phi:[[-2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_5$, $ M_6$, $ q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ M_7$, $ M_8$, $ M_4$, $ M_3$, $ \phi_1^2$, $ \phi_1q_2^2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_5^2$, $ M_5M_6$, $ M_6^2$, $ M_5q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ M_5q_2\tilde{q}_2$, $ M_6q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_5M_7$, $ M_6M_7$, $ M_5M_8$, $ M_6M_8$, $ \phi_1q_1q_2$, $ M_7q_2\tilde{q}_1$, $ M_8q_2\tilde{q}_1$, $ M_7q_2\tilde{q}_2$, $ M_8q_2\tilde{q}_2$, $ M_7^2$, $ M_7M_8$, $ M_8^2$, $ M_4M_5$, $ M_4M_6$, $ M_4q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_2$, $ M_4M_7$, $ M_4M_8$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ M_3M_5$, $ M_3M_6$, $ M_5\phi_1^2$, $ M_6\phi_1^2$, $ M_3q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ M_3q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_3M_7$, $ M_3M_8$, $ M_7\phi_1^2$, $ M_8\phi_1^2$, $ M_5\phi_1q_2^2$, $ M_6\phi_1q_2^2$, $ \phi_1q_2^3\tilde{q}_1$, $ \phi_1q_2^3\tilde{q}_2$, $ M_7\phi_1q_2^2$, $ M_8\phi_1q_2^2$, $ M_4^2$, $ M_3M_4$, $ M_4\phi_1^2$ | $M_4\phi_1q_2^2$ | -5 | 4*t^2.23 + 2*t^2.36 + t^2.8 + 2*t^3.07 + t^3.2 + 3*t^4.34 + 10*t^4.47 + 8*t^4.6 + 3*t^4.73 + 4*t^5.04 + 2*t^5.17 + 8*t^5.3 + 6*t^5.43 + 2*t^5.56 + t^5.61 + t^5.87 - 5*t^6. + t^6.13 + 2*t^6.26 + t^6.39 + 8*t^6.57 + 22*t^6.7 + 16*t^6.83 + 10*t^6.96 + 4*t^7.09 + 3*t^7.14 + 7*t^7.27 + 9*t^7.4 + 18*t^7.53 + 18*t^7.66 + 10*t^7.79 + 4*t^7.84 + 3*t^7.92 - 2*t^8.1 - 20*t^8.23 - 6*t^8.36 + t^8.41 + 6*t^8.49 + 6*t^8.62 + 6*t^8.67 + 2*t^8.75 + 9*t^8.8 + 35*t^8.93 - t^4.53/y - (2*t^6.77)/y - (2*t^6.9)/y + (7*t^7.47)/y + (7*t^7.6)/y + t^7.73/y + (4*t^8.04)/y + (4*t^8.17)/y + (10*t^8.3)/y + (8*t^8.43)/y + (2*t^8.56)/y + (2*t^8.87)/y - t^4.53*y - 2*t^6.77*y - 2*t^6.9*y + 7*t^7.47*y + 7*t^7.6*y + t^7.73*y + 4*t^8.04*y + 4*t^8.17*y + 10*t^8.3*y + 8*t^8.43*y + 2*t^8.56*y + 2*t^8.87*y | 4*g1*t^2.23 + (2*t^2.36)/g1^7 + g1^12*t^2.8 + (2*t^3.07)/g1^4 + t^3.2/g1^12 + 3*g1^10*t^4.34 + 10*g1^2*t^4.47 + (8*t^4.6)/g1^6 + (3*t^4.73)/g1^14 + 4*g1^13*t^5.04 + 2*g1^5*t^5.17 + (8*t^5.3)/g1^3 + (6*t^5.43)/g1^11 + (2*t^5.56)/g1^19 + g1^24*t^5.61 + g1^8*t^5.87 - 5*t^6. + t^6.13/g1^8 + (2*t^6.26)/g1^16 + t^6.39/g1^24 + 8*g1^11*t^6.57 + 22*g1^3*t^6.7 + (16*t^6.83)/g1^5 + (10*t^6.96)/g1^13 + (4*t^7.09)/g1^21 + 3*g1^22*t^7.14 + 7*g1^14*t^7.27 + 9*g1^6*t^7.4 + (18*t^7.53)/g1^2 + (18*t^7.66)/g1^10 + (10*t^7.79)/g1^18 + 4*g1^25*t^7.84 + (3*t^7.92)/g1^26 - 2*g1^9*t^8.1 - 20*g1*t^8.23 - (6*t^8.36)/g1^7 + g1^36*t^8.41 + (6*t^8.49)/g1^15 + (6*t^8.62)/g1^23 + 6*g1^20*t^8.67 + (2*t^8.75)/g1^31 + 9*g1^12*t^8.8 + 35*g1^4*t^8.93 - t^4.53/(g1^2*y) - (2*t^6.77)/(g1*y) - (2*t^6.9)/(g1^9*y) + (7*g1^2*t^7.47)/y + (7*t^7.6)/(g1^6*y) + t^7.73/(g1^14*y) + (4*g1^13*t^8.04)/y + (4*g1^5*t^8.17)/y + (10*t^8.3)/(g1^3*y) + (8*t^8.43)/(g1^11*y) + (2*t^8.56)/(g1^19*y) + (2*g1^8*t^8.87)/y - (t^4.53*y)/g1^2 - (2*t^6.77*y)/g1 - (2*t^6.9*y)/g1^9 + 7*g1^2*t^7.47*y + (7*t^7.6*y)/g1^6 + (t^7.73*y)/g1^14 + 4*g1^13*t^8.04*y + 4*g1^5*t^8.17*y + (10*t^8.3*y)/g1^3 + (8*t^8.43*y)/g1^11 + (2*t^8.56*y)/g1^19 + 2*g1^8*t^8.87*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
2396 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_6\phi_1q_2\tilde{q}_2$ + $ M_7q_1\tilde{q}_2$ | 0.6488 | 0.8541 | 0.7596 | [X:[], M:[0.9712, 1.0864, 1.0288, 0.9136, 0.7428, 0.7428, 0.8004], q:[0.7428, 0.286], qb:[0.4568, 0.4568], phi:[0.5144]] | 4*t^2.23 + t^2.4 + t^2.74 + 2*t^3.09 + t^3.26 + t^3.6 + 3*t^4.28 + 10*t^4.46 + 4*t^4.63 + t^4.8 + 4*t^4.97 + t^5.14 + 8*t^5.31 + t^5.48 + 4*t^5.49 + t^5.66 + 5*t^5.83 - 4*t^6. - t^4.54/y - t^4.54*y | detail |