Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
4246 | SU2adj1nf2 | $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ + $ M_2q_2\tilde{q}_2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_1M_3$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_1q_2$ + $ M_1M_4$ + $ M_3M_6$ + $ M_7\phi_1q_2^2$ + $ M_8\phi_1q_2\tilde{q}_1$ | 0.6745 | 0.8642 | 0.7805 | [X:[], M:[1.1693, 0.7283, 0.8307, 0.8307, 0.7283, 1.1693, 0.677, 0.7795], q:[0.8051, 0.4666], qb:[0.3641, 0.8051], phi:[0.3898]] | [X:[], M:[[-6], [-14], [6], [6], [-14], [-6], [-24], [-4]], q:[[1], [13]], qb:[[-7], [1]], phi:[[-2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_7$, $ M_2$, $ M_5$, $ M_8$, $ \phi_1^2$, $ M_4$, $ \phi_1\tilde{q}_1^2$, $ M_1$, $ M_6$, $ M_7^2$, $ M_2M_7$, $ M_5M_7$, $ M_2^2$, $ M_2M_5$, $ M_5^2$, $ M_7M_8$, $ M_7\phi_1^2$, $ M_4M_7$, $ M_2M_8$, $ M_5M_8$, $ M_2\phi_1^2$, $ M_5\phi_1^2$, $ M_2M_4$, $ M_4M_5$, $ M_8^2$, $ M_8\phi_1^2$, $ \phi_1^4$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_4M_8$, $ M_4\phi_1^2$, $ q_1\tilde{q}_2$, $ M_4^2$, $ \phi_1q_2\tilde{q}_2$, $ M_7\phi_1\tilde{q}_1^2$, $ M_1M_7$, $ M_6M_7$, $ M_2\phi_1\tilde{q}_1^2$, $ M_5\phi_1\tilde{q}_1^2$, $ M_1M_2$, $ M_1M_5$, $ M_2M_6$, $ M_5M_6$, $ M_8\phi_1\tilde{q}_1^2$, $ \phi_1^3\tilde{q}_1^2$, $ M_1M_8$, $ M_6M_8$, $ M_1\phi_1^2$, $ M_6\phi_1^2$, $ M_4\phi_1\tilde{q}_1^2$ | $M_4M_6$, $ \phi_1\tilde{q}_2^2$ | -1 | t^2.03 + 2*t^2.18 + 2*t^2.34 + t^2.49 + t^3.35 + 2*t^3.51 + t^4.06 + 2*t^4.22 + 5*t^4.37 + 5*t^4.52 + 5*t^4.68 + 3*t^4.83 + t^4.98 + t^5.39 + 4*t^5.54 + 5*t^5.69 + 3*t^5.85 - t^6. + t^6.09 - 2*t^6.15 + 2*t^6.25 - t^6.31 + 5*t^6.4 + 9*t^6.55 + 12*t^6.71 + 13*t^6.86 + 11*t^7.02 + 3*t^7.17 - 2*t^7.32 + t^7.42 - 2*t^7.48 + 4*t^7.57 - t^7.63 + 8*t^7.72 + 11*t^7.88 + 6*t^8.03 + t^8.12 - t^8.18 + 2*t^8.28 - 7*t^8.34 + 5*t^8.43 - 9*t^8.49 + 9*t^8.59 - 6*t^8.65 + 17*t^8.74 - 2*t^8.8 + 23*t^8.89 - t^4.17/y - t^6.2/y - (2*t^6.35)/y - (2*t^6.51)/y + (2*t^7.22)/y + (3*t^7.37)/y + (5*t^7.52)/y + (3*t^7.68)/y + (4*t^7.83)/y + (2*t^7.98)/y + t^8.14/y - t^8.23/y - t^8.39/y - t^8.54/y + (2*t^8.69)/y + (2*t^8.85)/y - t^4.17*y - t^6.2*y - 2*t^6.35*y - 2*t^6.51*y + 2*t^7.22*y + 3*t^7.37*y + 5*t^7.52*y + 3*t^7.68*y + 4*t^7.83*y + 2*t^7.98*y + t^8.14*y - t^8.23*y - t^8.39*y - t^8.54*y + 2*t^8.69*y + 2*t^8.85*y | t^2.03/g1^24 + (2*t^2.18)/g1^14 + (2*t^2.34)/g1^4 + g1^6*t^2.49 + t^3.35/g1^16 + (2*t^3.51)/g1^6 + t^4.06/g1^48 + (2*t^4.22)/g1^38 + (5*t^4.37)/g1^28 + (5*t^4.52)/g1^18 + (5*t^4.68)/g1^8 + 3*g1^2*t^4.83 + g1^12*t^4.98 + t^5.39/g1^40 + (4*t^5.54)/g1^30 + (5*t^5.69)/g1^20 + (3*t^5.85)/g1^10 - t^6. + t^6.09/g1^72 - 2*g1^10*t^6.15 + (2*t^6.25)/g1^62 - g1^20*t^6.31 + (5*t^6.4)/g1^52 + (9*t^6.55)/g1^42 + (12*t^6.71)/g1^32 + (13*t^6.86)/g1^22 + (11*t^7.02)/g1^12 + (3*t^7.17)/g1^2 - 2*g1^8*t^7.32 + t^7.42/g1^64 - 2*g1^18*t^7.48 + (4*t^7.57)/g1^54 - g1^28*t^7.63 + (8*t^7.72)/g1^44 + (11*t^7.88)/g1^34 + (6*t^8.03)/g1^24 + t^8.12/g1^96 - t^8.18/g1^14 + (2*t^8.28)/g1^86 - (7*t^8.34)/g1^4 + (5*t^8.43)/g1^76 - 9*g1^6*t^8.49 + (9*t^8.59)/g1^66 - 6*g1^16*t^8.65 + (17*t^8.74)/g1^56 - 2*g1^26*t^8.8 + (23*t^8.89)/g1^46 - t^4.17/(g1^2*y) - t^6.2/(g1^26*y) - (2*t^6.35)/(g1^16*y) - (2*t^6.51)/(g1^6*y) + (2*t^7.22)/(g1^38*y) + (3*t^7.37)/(g1^28*y) + (5*t^7.52)/(g1^18*y) + (3*t^7.68)/(g1^8*y) + (4*g1^2*t^7.83)/y + (2*g1^12*t^7.98)/y + (g1^22*t^8.14)/y - t^8.23/(g1^50*y) - t^8.39/(g1^40*y) - t^8.54/(g1^30*y) + (2*t^8.69)/(g1^20*y) + (2*t^8.85)/(g1^10*y) - (t^4.17*y)/g1^2 - (t^6.2*y)/g1^26 - (2*t^6.35*y)/g1^16 - (2*t^6.51*y)/g1^6 + (2*t^7.22*y)/g1^38 + (3*t^7.37*y)/g1^28 + (5*t^7.52*y)/g1^18 + (3*t^7.68*y)/g1^8 + 4*g1^2*t^7.83*y + 2*g1^12*t^7.98*y + g1^22*t^8.14*y - (t^8.23*y)/g1^50 - (t^8.39*y)/g1^40 - (t^8.54*y)/g1^30 + (2*t^8.69*y)/g1^20 + (2*t^8.85*y)/g1^10 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
2246 | SU2adj1nf2 | $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ + $ M_2q_2\tilde{q}_2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_1M_3$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_1q_2$ + $ M_1M_4$ + $ M_3M_6$ + $ M_7\phi_1q_2^2$ | 0.6569 | 0.8322 | 0.7893 | [X:[], M:[1.1706, 0.7315, 0.8294, 0.8294, 0.7315, 1.1706, 0.6826], q:[0.8049, 0.4636], qb:[0.3658, 0.8049], phi:[0.3902]] | t^2.05 + 2*t^2.19 + t^2.34 + t^2.49 + t^3.37 + 2*t^3.51 + t^3.66 + t^4.1 + 2*t^4.24 + 4*t^4.39 + 3*t^4.54 + 3*t^4.68 + 2*t^4.83 + t^4.98 + t^5.41 + 4*t^5.56 + 5*t^5.71 + 3*t^5.85 - t^4.17/y - t^4.17*y | detail |