Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
4202 SU2adj1nf2 $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ + $ M_2q_2\tilde{q}_2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_2\phi_1^2$ + $ M_4q_1\tilde{q}_2$ + $ M_3M_4$ + $ M_5\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_6\phi_1\tilde{q}_2^2$ + $ M_7q_1q_2$ + $ M_8q_1\tilde{q}_1$ 0.7185 0.9256 0.7763 [X:[], M:[0.9769, 1.084, 1.145, 0.855, 0.687, 0.7941, 0.687, 0.7479], q:[0.771, 0.542], qb:[0.4811, 0.374], phi:[0.458]] [X:[], M:[[13], [-4], [5], [-5], [3], [-14], [3], [12]], q:[[-1], [-2]], qb:[[-11], [6]], phi:[[2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_5$, $ M_7$, $ M_8$, $ M_6$, $ M_4$, $ \phi_1^2$, $ M_1$, $ M_2$, $ M_3$, $ M_5^2$, $ M_5M_7$, $ M_7^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ M_5M_8$, $ M_7M_8$, $ M_5M_6$, $ M_6M_7$, $ \phi_1q_2\tilde{q}_1$, $ M_8^2$, $ M_4M_5$, $ M_4M_7$, $ M_6M_8$, $ \phi_1q_2^2$, $ M_6^2$, $ M_4M_8$, $ M_5\phi_1^2$, $ M_7\phi_1^2$, $ M_4M_6$, $ M_1M_5$, $ M_1M_7$, $ M_8\phi_1^2$, $ M_4^2$, $ M_6\phi_1^2$, $ M_1M_8$, $ M_2M_5$, $ M_1M_6$, $ M_2M_7$, $ M_4\phi_1^2$, $ M_1M_4$, $ M_3M_5$, $ M_3M_7$, $ M_2M_8$, $ \phi_1^4$, $ M_2M_6$, $ M_3M_8$, $ M_1\phi_1^2$, $ M_2M_4$, $ M_3M_6$, $ M_1^2$ . -1 2*t^2.06 + t^2.24 + t^2.38 + t^2.57 + t^2.75 + t^2.93 + t^3.25 + t^3.43 + 4*t^4.12 + t^4.26 + 2*t^4.3 + 3*t^4.44 + t^4.49 + 4*t^4.63 + t^4.76 + 3*t^4.81 + t^4.95 + 3*t^4.99 + 2*t^5.13 + t^5.17 + 4*t^5.31 + 4*t^5.5 + t^5.63 + t^5.68 + t^5.82 + t^5.86 - t^6. + 6*t^6.18 + t^6.32 + 5*t^6.37 + 5*t^6.5 + 2*t^6.55 + t^6.64 + 7*t^6.69 + t^6.73 + 4*t^6.83 + 6*t^6.87 + 5*t^7.01 + 6*t^7.05 + t^7.15 + 4*t^7.19 + 3*t^7.24 + t^7.33 + 8*t^7.37 + t^7.42 + 2*t^7.51 + 9*t^7.56 + 4*t^7.7 + 4*t^7.74 + 2*t^7.88 + 3*t^7.92 + t^8.02 - 2*t^8.06 + t^8.11 + 8*t^8.24 - 2*t^8.38 + 8*t^8.43 + t^8.52 + 3*t^8.57 + 5*t^8.61 + 2*t^8.7 + 9*t^8.75 + 3*t^8.79 + 7*t^8.89 + 6*t^8.93 + t^8.97 - t^4.37/y - (2*t^6.43)/y - t^6.62/y - t^6.76/y + t^7.12/y + t^7.3/y + (3*t^7.44)/y + (3*t^7.63)/y + (3*t^7.81)/y + t^7.95/y + (4*t^7.99)/y + (2*t^8.13)/y + t^8.17/y + (6*t^8.31)/y + t^8.5/y + t^8.63/y - t^8.86/y - t^4.37*y - 2*t^6.43*y - t^6.62*y - t^6.76*y + t^7.12*y + t^7.3*y + 3*t^7.44*y + 3*t^7.63*y + 3*t^7.81*y + t^7.95*y + 4*t^7.99*y + 2*t^8.13*y + t^8.17*y + 6*t^8.31*y + t^8.5*y + t^8.63*y - t^8.86*y 2*g1^3*t^2.06 + g1^12*t^2.24 + t^2.38/g1^14 + t^2.57/g1^5 + g1^4*t^2.75 + g1^13*t^2.93 + t^3.25/g1^4 + g1^5*t^3.43 + 4*g1^6*t^4.12 + t^4.26/g1^20 + 2*g1^15*t^4.3 + (3*t^4.44)/g1^11 + g1^24*t^4.49 + (4*t^4.63)/g1^2 + t^4.76/g1^28 + 3*g1^7*t^4.81 + t^4.95/g1^19 + 3*g1^16*t^4.99 + (2*t^5.13)/g1^10 + g1^25*t^5.17 + (4*t^5.31)/g1 + 4*g1^8*t^5.5 + t^5.63/g1^18 + g1^17*t^5.68 + t^5.82/g1^9 + g1^26*t^5.86 - t^6. + 6*g1^9*t^6.18 + t^6.32/g1^17 + 5*g1^18*t^6.37 + (5*t^6.5)/g1^8 + 2*g1^27*t^6.55 + t^6.64/g1^34 + 7*g1*t^6.69 + g1^36*t^6.73 + (4*t^6.83)/g1^25 + 6*g1^10*t^6.87 + (5*t^7.01)/g1^16 + 6*g1^19*t^7.05 + t^7.15/g1^42 + (4*t^7.19)/g1^7 + 3*g1^28*t^7.24 + t^7.33/g1^33 + 8*g1^2*t^7.37 + g1^37*t^7.42 + (2*t^7.51)/g1^24 + 9*g1^11*t^7.56 + (4*t^7.7)/g1^15 + 4*g1^20*t^7.74 + (2*t^7.88)/g1^6 + 3*g1^29*t^7.92 + t^8.02/g1^32 - 2*g1^3*t^8.06 + g1^38*t^8.11 + 8*g1^12*t^8.24 - (2*t^8.38)/g1^14 + 8*g1^21*t^8.43 + t^8.52/g1^40 + (3*t^8.57)/g1^5 + 5*g1^30*t^8.61 + (2*t^8.7)/g1^31 + 9*g1^4*t^8.75 + 3*g1^39*t^8.79 + (7*t^8.89)/g1^22 + 6*g1^13*t^8.93 + g1^48*t^8.97 - (g1^2*t^4.37)/y - (2*g1^5*t^6.43)/y - (g1^14*t^6.62)/y - t^6.76/(g1^12*y) + (g1^6*t^7.12)/y + (g1^15*t^7.3)/y + (3*t^7.44)/(g1^11*y) + (3*t^7.63)/(g1^2*y) + (3*g1^7*t^7.81)/y + t^7.95/(g1^19*y) + (4*g1^16*t^7.99)/y + (2*t^8.13)/(g1^10*y) + (g1^25*t^8.17)/y + (6*t^8.31)/(g1*y) + (g1^8*t^8.5)/y + t^8.63/(g1^18*y) - (g1^26*t^8.86)/y - g1^2*t^4.37*y - 2*g1^5*t^6.43*y - g1^14*t^6.62*y - (t^6.76*y)/g1^12 + g1^6*t^7.12*y + g1^15*t^7.3*y + (3*t^7.44*y)/g1^11 + (3*t^7.63*y)/g1^2 + 3*g1^7*t^7.81*y + (t^7.95*y)/g1^19 + 4*g1^16*t^7.99*y + (2*t^8.13*y)/g1^10 + g1^25*t^8.17*y + (6*t^8.31*y)/g1 + g1^8*t^8.5*y + (t^8.63*y)/g1^18 - g1^26*t^8.86*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2205 SU2adj1nf2 $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ + $ M_2q_2\tilde{q}_2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_2\phi_1^2$ + $ M_4q_1\tilde{q}_2$ + $ M_3M_4$ + $ M_5\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_6\phi_1\tilde{q}_2^2$ + $ M_7q_1q_2$ 0.6997 0.8917 0.7847 [X:[], M:[0.9929, 1.0791, 1.1511, 0.8489, 0.6907, 0.7768, 0.6907], q:[0.7698, 0.5395], qb:[0.4675, 0.3814], phi:[0.4605]] 2*t^2.07 + t^2.33 + t^2.55 + t^2.76 + t^2.98 + t^3.24 + t^3.45 + t^3.71 + 4*t^4.14 + t^4.19 + 3*t^4.4 + 3*t^4.62 + t^4.66 + 2*t^4.83 + t^4.88 + 2*t^5.05 + 2*t^5.09 + 4*t^5.31 + 3*t^5.53 + t^5.57 + 3*t^5.78 + t^5.96 - t^6. - t^4.38/y - t^4.38*y detail