Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
4151 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ + ${ }M_{3}M_{4}$ + ${ }M_{5}q_{1}\tilde{q}_{1}$ + ${ }M_{1}M_{6}$ + ${ }M_{2}M_{7}$ + ${ }M_{8}\phi_{1}\tilde{q}_{2}^{2}$ 0.6836 0.8569 0.7977 [M:[1.0043, 1.0756, 1.1555, 0.8445, 0.7732, 0.9957, 0.9244, 0.7646], q:[0.7689, 0.5378], qb:[0.4579, 0.3866], phi:[0.4622]] [M:[[13], [-4], [5], [-5], [12], [-13], [4], [-14]], q:[[-1], [-2]], qb:[[-11], [6]], phi:[[2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{8}$, ${ }M_{5}$, ${ }M_{4}$, ${ }M_{7}$, ${ }\phi_{1}^{2}$, ${ }M_{6}$, ${ }M_{3}$, ${ }q_{1}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{8}^{2}$, ${ }M_{5}M_{8}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{5}^{2}$, ${ }M_{4}M_{8}$, ${ }M_{4}M_{5}$, ${ }M_{4}^{2}$, ${ }M_{7}M_{8}$, ${ }M_{8}\phi_{1}^{2}$, ${ }M_{5}M_{7}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{6}M_{8}$, ${ }M_{5}M_{6}$, ${ }M_{4}M_{7}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{7}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{6}M_{7}$, ${ }M_{3}M_{8}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{6}^{2}$ ${}$ -2 t^2.294 + t^2.32 + t^2.534 + 2*t^2.773 + t^2.987 + t^3.466 + 2*t^3.92 + t^4.134 + t^4.16 + t^4.374 + t^4.588 + 2*t^4.613 + t^4.639 + t^4.827 + t^4.853 + 3*t^5.067 + 2*t^5.093 + t^5.281 + 3*t^5.307 + t^5.521 + 2*t^5.546 + 2*t^5.76 + t^5.974 - 2*t^6. + t^6.214 + 2*t^6.24 + t^6.428 + 2*t^6.454 + t^6.479 + 2*t^6.668 + 3*t^6.693 + t^6.882 + 6*t^6.907 + 2*t^6.933 + t^6.959 + 2*t^7.121 + t^7.147 + 3*t^7.361 + 3*t^7.387 + 2*t^7.412 + t^7.575 + 3*t^7.601 + 2*t^7.626 + t^7.815 + 4*t^7.84 + 2*t^7.866 + 4*t^8.054 + 3*t^8.08 + 2*t^8.268 - t^8.32 + 3*t^8.508 + t^8.722 + 3*t^8.748 - 3*t^8.773 + t^8.799 + 3*t^8.962 - t^4.387/y - t^6.68/y - t^6.706/y - t^7.16/y + (2*t^7.613)/y + t^7.827/y + t^7.853/y + (3*t^8.067)/y + (3*t^8.093)/y + t^8.281/y + (3*t^8.307)/y + t^8.521/y + t^8.546/y + (3*t^8.76)/y + t^8.786/y - t^8.974/y - t^4.387*y - t^6.68*y - t^6.706*y - t^7.16*y + 2*t^7.613*y + t^7.827*y + t^7.853*y + 3*t^8.067*y + 3*t^8.093*y + t^8.281*y + 3*t^8.307*y + t^8.521*y + t^8.546*y + 3*t^8.76*y + t^8.786*y - t^8.974*y t^2.294/g1^14 + g1^12*t^2.32 + t^2.534/g1^5 + 2*g1^4*t^2.773 + t^2.987/g1^13 + g1^5*t^3.466 + (2*t^3.92)/g1^3 + t^4.134/g1^20 + g1^6*t^4.16 + t^4.374/g1^11 + t^4.588/g1^28 + (2*t^4.613)/g1^2 + g1^24*t^4.639 + t^4.827/g1^19 + g1^7*t^4.853 + (3*t^5.067)/g1^10 + 2*g1^16*t^5.093 + t^5.281/g1^27 + (3*t^5.307)/g1 + t^5.521/g1^18 + 2*g1^8*t^5.546 + (2*t^5.76)/g1^9 + t^5.974/g1^26 - 2*t^6. + t^6.214/g1^17 + 2*g1^9*t^6.24 + t^6.428/g1^34 + (2*t^6.454)/g1^8 + g1^18*t^6.479 + (2*t^6.668)/g1^25 + 3*g1*t^6.693 + t^6.882/g1^42 + (6*t^6.907)/g1^16 + 2*g1^10*t^6.933 + g1^36*t^6.959 + (2*t^7.121)/g1^33 + t^7.147/g1^7 + (3*t^7.361)/g1^24 + 3*g1^2*t^7.387 + 2*g1^28*t^7.412 + t^7.575/g1^41 + (3*t^7.601)/g1^15 + 2*g1^11*t^7.626 + t^7.815/g1^32 + (4*t^7.84)/g1^6 + 2*g1^20*t^7.866 + (4*t^8.054)/g1^23 + 3*g1^3*t^8.08 + (2*t^8.268)/g1^40 - g1^12*t^8.32 + (3*t^8.508)/g1^31 + t^8.722/g1^48 + (3*t^8.748)/g1^22 - 3*g1^4*t^8.773 + g1^30*t^8.799 + (3*t^8.962)/g1^39 - (g1^2*t^4.387)/y - t^6.68/(g1^12*y) - (g1^14*t^6.706)/y - (g1^6*t^7.16)/y + (2*t^7.613)/(g1^2*y) + t^7.827/(g1^19*y) + (g1^7*t^7.853)/y + (3*t^8.067)/(g1^10*y) + (3*g1^16*t^8.093)/y + t^8.281/(g1^27*y) + (3*t^8.307)/(g1*y) + t^8.521/(g1^18*y) + (g1^8*t^8.546)/y + (3*t^8.76)/(g1^9*y) + (g1^17*t^8.786)/y - t^8.974/(g1^26*y) - g1^2*t^4.387*y - (t^6.68*y)/g1^12 - g1^14*t^6.706*y - g1^6*t^7.16*y + (2*t^7.613*y)/g1^2 + (t^7.827*y)/g1^19 + g1^7*t^7.853*y + (3*t^8.067*y)/g1^10 + 3*g1^16*t^8.093*y + (t^8.281*y)/g1^27 + (3*t^8.307*y)/g1 + (t^8.521*y)/g1^18 + g1^8*t^8.546*y + (3*t^8.76*y)/g1^9 + g1^17*t^8.786*y - (t^8.974*y)/g1^26


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2172 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ + ${ }M_{3}M_{4}$ + ${ }M_{5}q_{1}\tilde{q}_{1}$ + ${ }M_{1}M_{6}$ + ${ }M_{2}M_{7}$ 0.6658 0.8247 0.8074 [M:[0.981, 1.0828, 1.1466, 0.8534, 0.7517, 1.019, 0.9172], q:[0.7707, 0.5414], qb:[0.4776, 0.3759], phi:[0.4586]] t^2.255 + t^2.56 + 2*t^2.752 + t^3.057 + t^3.44 + t^3.631 + 2*t^3.936 + t^4.128 + t^4.241 + t^4.433 + t^4.51 + t^4.624 + t^4.816 + 2*t^5.007 + t^5.121 + 3*t^5.312 + 2*t^5.503 + t^5.617 + t^5.809 + t^5.886 - 2*t^6. - t^4.376/y - t^4.376*y detail