Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
4138 | SU2adj1nf2 | ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ + ${ }M_{3}M_{4}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{6}$ + ${ }M_{3}M_{7}$ + ${ }M_{8}q_{1}q_{2}$ | 0.6956 | 0.8848 | 0.7862 | [M:[1.0271, 1.0686, 1.1643, 0.8357, 0.6986, 0.9729, 0.8357, 0.6986], q:[0.7671, 0.5343], qb:[0.4386, 0.3971], phi:[0.4657]] | [M:[[13], [-4], [5], [-5], [3], [-13], [-5], [3]], q:[[-1], [-2]], qb:[[-11], [6]], phi:[[2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{5}$, ${ }M_{8}$, ${ }M_{4}$, ${ }M_{7}$, ${ }\phi_{1}^{2}$, ${ }M_{6}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{5}^{2}$, ${ }M_{5}M_{8}$, ${ }M_{8}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{4}M_{5}$, ${ }M_{5}M_{7}$, ${ }M_{4}M_{8}$, ${ }M_{7}M_{8}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{8}\phi_{1}^{2}$, ${ }M_{4}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{4}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{6}M_{8}$, ${ }M_{2}M_{5}$, ${ }M_{2}M_{8}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{6}M_{7}$, ${ }M_{2}M_{4}$, ${ }M_{2}M_{7}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{5}q_{1}\tilde{q}_{1}$, ${ }M_{8}q_{1}\tilde{q}_{1}$, ${ }M_{6}^{2}$, ${ }M_{5}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{8}\phi_{1}\tilde{q}_{2}^{2}$ | ${}$ | -2 | 2*t^2.096 + 2*t^2.507 + t^2.794 + t^2.919 + t^3.206 + t^3.617 + t^3.78 + t^4.029 + 4*t^4.191 + t^4.316 + 5*t^4.603 + 2*t^4.89 + 5*t^5.014 + 4*t^5.301 + 2*t^5.426 + 4*t^5.713 + t^5.837 + t^5.876 - 2*t^6. + 4*t^6.124 + 6*t^6.287 + t^6.411 + 3*t^6.536 + t^6.574 + 8*t^6.699 + 3*t^6.823 + t^6.947 + 2*t^6.986 + 9*t^7.11 + 2*t^7.234 - t^7.273 + 6*t^7.397 + 7*t^7.521 + t^7.56 + t^7.646 - 2*t^7.684 + 8*t^7.809 + 5*t^7.933 + 2*t^7.971 + t^8.057 - 6*t^8.096 + 9*t^8.22 + 3*t^8.344 + 7*t^8.383 - 5*t^8.507 + 10*t^8.632 + t^8.67 + t^8.756 + 8*t^8.794 + t^8.919 - t^4.397/y - (2*t^6.493)/y - t^6.904/y + t^7.191/y + (4*t^7.603)/y + (3*t^7.89)/y + (3*t^8.014)/y + (6*t^8.301)/y + (2*t^8.426)/y - (3*t^8.589)/y + (5*t^8.713)/y + (2*t^8.876)/y - t^4.397*y - 2*t^6.493*y - t^6.904*y + t^7.191*y + 4*t^7.603*y + 3*t^7.89*y + 3*t^8.014*y + 6*t^8.301*y + 2*t^8.426*y - 3*t^8.589*y + 5*t^8.713*y + 2*t^8.876*y | 2*g1^3*t^2.096 + (2*t^2.507)/g1^5 + g1^4*t^2.794 + t^2.919/g1^13 + t^3.206/g1^4 + t^3.617/g1^12 + g1^14*t^3.78 + t^4.029/g1^20 + 4*g1^6*t^4.191 + t^4.316/g1^11 + (5*t^4.603)/g1^2 + 2*g1^7*t^4.89 + (5*t^5.014)/g1^10 + (4*t^5.301)/g1 + (2*t^5.426)/g1^18 + (4*t^5.713)/g1^9 + t^5.837/g1^26 + g1^17*t^5.876 - 2*t^6. + (4*t^6.124)/g1^17 + 6*g1^9*t^6.287 + t^6.411/g1^8 + (3*t^6.536)/g1^25 + g1^18*t^6.574 + 8*g1*t^6.699 + (3*t^6.823)/g1^16 + t^6.947/g1^33 + 2*g1^10*t^6.986 + (9*t^7.11)/g1^7 + (2*t^7.234)/g1^24 - g1^19*t^7.273 + 6*g1^2*t^7.397 + (7*t^7.521)/g1^15 + g1^28*t^7.56 + t^7.646/g1^32 - 2*g1^11*t^7.684 + (8*t^7.809)/g1^6 + (5*t^7.933)/g1^23 + 2*g1^20*t^7.971 + t^8.057/g1^40 - 6*g1^3*t^8.096 + (9*t^8.22)/g1^14 + (3*t^8.344)/g1^31 + 7*g1^12*t^8.383 - (5*t^8.507)/g1^5 + (10*t^8.632)/g1^22 + g1^21*t^8.67 + t^8.756/g1^39 + 8*g1^4*t^8.794 + t^8.919/g1^13 - (g1^2*t^4.397)/y - (2*g1^5*t^6.493)/y - t^6.904/(g1^3*y) + (g1^6*t^7.191)/y + (4*t^7.603)/(g1^2*y) + (3*g1^7*t^7.89)/y + (3*t^8.014)/(g1^10*y) + (6*t^8.301)/(g1*y) + (2*t^8.426)/(g1^18*y) - (3*g1^8*t^8.589)/y + (5*t^8.713)/(g1^9*y) + (2*g1^17*t^8.876)/y - g1^2*t^4.397*y - 2*g1^5*t^6.493*y - (t^6.904*y)/g1^3 + g1^6*t^7.191*y + (4*t^7.603*y)/g1^2 + 3*g1^7*t^7.89*y + (3*t^8.014*y)/g1^10 + (6*t^8.301*y)/g1 + (2*t^8.426*y)/g1^18 - 3*g1^8*t^8.589*y + (5*t^8.713*y)/g1^9 + 2*g1^17*t^8.876*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
2163 | SU2adj1nf2 | ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ + ${ }M_{3}M_{4}$ + ${ }M_{5}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{6}$ + ${ }M_{3}M_{7}$ | 0.675 | 0.8455 | 0.7983 | [M:[1.0291, 1.068, 1.1651, 0.8349, 0.699, 0.9709, 0.8349], q:[0.767, 0.534], qb:[0.4369, 0.3981], phi:[0.466]] | t^2.097 + 2*t^2.505 + t^2.796 + t^2.913 + t^3.204 + t^3.612 + t^3.786 + t^3.903 + t^4.019 + 2*t^4.194 + t^4.311 + 3*t^4.602 + t^4.893 + 4*t^5.01 + 3*t^5.301 + 2*t^5.417 + 3*t^5.709 + t^5.825 - t^6. - t^4.398/y - t^4.398*y | detail |