Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
4118 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{3}M_{5}$ + ${ }M_{6}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}M_{7}$ + ${ }M_{2}M_{8}$ 0.6805 0.8393 0.8109 [M:[0.9841, 1.1111, 1.0159, 0.7937, 0.9841, 0.6984, 1.2063, 0.8889], q:[0.7778, 0.4603], qb:[0.5556, 0.4286], phi:[0.4444]] [M:[[1], [0], [-1], [-1], [1], [-2], [1], [0]], q:[[0], [-1]], qb:[[0], [1]], phi:[[0]]] 1 {a: 2701/3969, c: 3331/3969, M1: 62/63, M2: 10/9, M3: 64/63, M4: 50/63, M5: 62/63, M6: 44/63, M7: 76/63, M8: 8/9, q1: 7/9, q2: 29/63, qb1: 5/9, qb2: 3/7, phi1: 4/9}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{6}$, ${ }M_{8}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }M_{5}$, ${ }M_{7}$, ${ }q_{1}q_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{6}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{6}M_{8}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{5}M_{6}$, ${ }M_{8}^{2}$, ${ }M_{8}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}M_{8}$, ${ }M_{5}M_{8}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{6}q_{1}q_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{5}^{2}$ ${}$ -3 t^2.095 + 2*t^2.667 + 2*t^2.952 + t^3.619 + t^3.714 + 2*t^4. + t^4.095 + t^4.19 + t^4.286 + t^4.381 + t^4.667 + 2*t^4.762 + 2*t^5.048 + 3*t^5.333 + 3*t^5.619 + t^5.81 + 2*t^5.905 - 3*t^6. + t^6.095 + t^6.19 + t^6.286 + t^6.381 + t^6.476 + 2*t^6.571 + 3*t^6.667 + 3*t^6.762 + 2*t^6.857 + 3*t^6.952 + t^7.048 + 2*t^7.143 + t^7.238 + t^7.333 + 2*t^7.429 + t^7.619 + 3*t^7.714 + t^7.81 + t^7.905 + 7*t^8. - t^8.095 + 2*t^8.19 + 5*t^8.286 + 2*t^8.476 + 3*t^8.571 - 4*t^8.667 + 2*t^8.762 + 5*t^8.857 - 3*t^8.952 - t^4.333/y - t^6.429/y - t^7./y - t^7.286/y + t^7.381/y + t^7.667/y + (2*t^7.762)/y + (2*t^8.048)/y + t^8.238/y + t^8.333/y - t^8.524/y + (4*t^8.619)/y + t^8.714/y + t^8.81/y + t^8.905/y - t^4.333*y - t^6.429*y - t^7.*y - t^7.286*y + t^7.381*y + t^7.667*y + 2*t^7.762*y + 2*t^8.048*y + t^8.238*y + t^8.333*y - t^8.524*y + 4*t^8.619*y + t^8.714*y + t^8.81*y + t^8.905*y t^2.095/g1^2 + 2*t^2.667 + 2*g1*t^2.952 + g1*t^3.619 + t^3.714/g1 + 2*t^4. + t^4.095/g1^2 + t^4.19/g1^4 + g1*t^4.286 + t^4.381/g1 + t^4.667 + (2*t^4.762)/g1^2 + (2*t^5.048)/g1 + 3*t^5.333 + 3*g1*t^5.619 + t^5.81/g1^3 + 2*g1^2*t^5.905 - 3*t^6. + t^6.095/g1^2 + t^6.19/g1^4 + t^6.286/g1^6 + t^6.381/g1 + t^6.476/g1^3 + 2*g1^2*t^6.571 + 3*t^6.667 + (3*t^6.762)/g1^2 + (2*t^6.857)/g1^4 + 3*g1*t^6.952 + t^7.048/g1 + (2*t^7.143)/g1^3 + g1^2*t^7.238 + t^7.333 + (2*t^7.429)/g1^2 + g1*t^7.619 + (3*t^7.714)/g1 + t^7.81/g1^3 + t^7.905/g1^5 + 7*t^8. - t^8.095/g1^2 + (2*t^8.19)/g1^4 + t^8.286/g1^6 + 4*g1*t^8.286 + t^8.381/g1^8 - t^8.381/g1 + (2*t^8.476)/g1^3 + t^8.571/g1^5 + 2*g1^2*t^8.571 - 4*t^8.667 + (2*t^8.762)/g1^2 + (3*t^8.857)/g1^4 + 2*g1^3*t^8.857 + (2*t^8.952)/g1^6 - 5*g1*t^8.952 - t^4.333/y - t^6.429/(g1^2*y) - t^7./y - (g1*t^7.286)/y + t^7.381/(g1*y) + t^7.667/y + (2*t^7.762)/(g1^2*y) + (2*t^8.048)/(g1*y) + (g1^2*t^8.238)/y + t^8.333/y - t^8.524/(g1^4*y) + (4*g1*t^8.619)/y + t^8.714/(g1*y) + t^8.81/(g1^3*y) + (g1^2*t^8.905)/y - t^4.333*y - (t^6.429*y)/g1^2 - t^7.*y - g1*t^7.286*y + (t^7.381*y)/g1 + t^7.667*y + (2*t^7.762*y)/g1^2 + (2*t^8.048*y)/g1 + g1^2*t^8.238*y + t^8.333*y - (t^8.524*y)/g1^4 + 4*g1*t^8.619*y + (t^8.714*y)/g1 + (t^8.81*y)/g1^3 + g1^2*t^8.905*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2144 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{3}M_{5}$ + ${ }M_{6}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}M_{7}$ 0.6705 0.8223 0.8154 [M:[0.9841, 1.1111, 1.0159, 0.7937, 0.9841, 0.6984, 1.2063], q:[0.7778, 0.4603], qb:[0.5556, 0.4286], phi:[0.4444]] t^2.095 + t^2.667 + 2*t^2.952 + t^3.333 + t^3.619 + t^3.714 + 2*t^4. + t^4.095 + t^4.19 + t^4.286 + t^4.381 + t^4.667 + t^4.762 + 2*t^5.048 + t^5.333 + t^5.429 + t^5.619 + t^5.81 + 2*t^5.905 - 2*t^6. - t^4.333/y - t^4.333*y detail {a: 1577/2352, c: 967/1176, M1: 62/63, M2: 10/9, M3: 64/63, M4: 50/63, M5: 62/63, M6: 44/63, M7: 76/63, q1: 7/9, q2: 29/63, qb1: 5/9, qb2: 3/7, phi1: 4/9}