Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
41 SU2adj1nf2 $M_1\phi_1^2$ 0.7003 0.8367 0.837 [X:[], M:[1.0907], q:[0.5454, 0.5454], qb:[0.5454, 0.5454], phi:[0.4546]] [X:[], M:[[2, 2, 2, 2]], q:[[4, 0, 0, 0], [0, 4, 0, 0]], qb:[[0, 0, 4, 0], [0, 0, 0, 4]], phi:[[-1, -1, -1, -1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$q_1q_2$, $ q_1\tilde{q}_1$, $ q_2\tilde{q}_1$, $ M_1$, $ q_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ \phi_1q_1^2$, $ \phi_1q_1q_2$, $ \phi_1q_2^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$ . -16 7*t^3.27 + 10*t^4.64 - 16*t^6. + 27*t^6.54 - 15*t^7.36 + 45*t^7.91 + 10*t^8.73 - t^4.36/y - t^4.36*y g1^4*g2^4*t^3.27 + g1^4*g3^4*t^3.27 + g2^4*g3^4*t^3.27 + g1^2*g2^2*g3^2*g4^2*t^3.27 + g1^4*g4^4*t^3.27 + g2^4*g4^4*t^3.27 + g3^4*g4^4*t^3.27 + (g1^7*t^4.64)/(g2*g3*g4) + (g1^3*g2^3*t^4.64)/(g3*g4) + (g2^7*t^4.64)/(g1*g3*g4) + (g1^3*g3^3*t^4.64)/(g2*g4) + (g2^3*g3^3*t^4.64)/(g1*g4) + (g3^7*t^4.64)/(g1*g2*g4) + (g1^3*g4^3*t^4.64)/(g2*g3) + (g2^3*g4^3*t^4.64)/(g1*g3) + (g3^3*g4^3*t^4.64)/(g1*g2) + (g4^7*t^4.64)/(g1*g2*g3) - 4*t^6. - (g1^4*t^6.)/g2^4 - (g2^4*t^6.)/g1^4 - (g1^4*t^6.)/g3^4 - (g2^4*t^6.)/g3^4 - (g3^4*t^6.)/g1^4 - (g3^4*t^6.)/g2^4 - (g1^4*t^6.)/g4^4 - (g2^4*t^6.)/g4^4 - (g3^4*t^6.)/g4^4 - (g4^4*t^6.)/g1^4 - (g4^4*t^6.)/g2^4 - (g4^4*t^6.)/g3^4 + g1^8*g2^8*t^6.54 + g1^8*g2^4*g3^4*t^6.54 + g1^4*g2^8*g3^4*t^6.54 + g1^8*g3^8*t^6.54 + g1^4*g2^4*g3^8*t^6.54 + g2^8*g3^8*t^6.54 + g1^6*g2^6*g3^2*g4^2*t^6.54 + g1^6*g2^2*g3^6*g4^2*t^6.54 + g1^2*g2^6*g3^6*g4^2*t^6.54 + g1^8*g2^4*g4^4*t^6.54 + g1^4*g2^8*g4^4*t^6.54 + g1^8*g3^4*g4^4*t^6.54 + 3*g1^4*g2^4*g3^4*g4^4*t^6.54 + g2^8*g3^4*g4^4*t^6.54 + g1^4*g3^8*g4^4*t^6.54 + g2^4*g3^8*g4^4*t^6.54 + g1^6*g2^2*g3^2*g4^6*t^6.54 + g1^2*g2^6*g3^2*g4^6*t^6.54 + g1^2*g2^2*g3^6*g4^6*t^6.54 + g1^8*g4^8*t^6.54 + g1^4*g2^4*g4^8*t^6.54 + g2^8*g4^8*t^6.54 + g1^4*g3^4*g4^8*t^6.54 + g2^4*g3^4*g4^8*t^6.54 + g3^8*g4^8*t^6.54 - (g1^3*t^7.36)/(g2*g3*g4^5) - (g2^3*t^7.36)/(g1*g3*g4^5) - (g3^3*t^7.36)/(g1*g2*g4^5) - (g1^3*t^7.36)/(g2*g3^5*g4) - (g2^3*t^7.36)/(g1*g3^5*g4) - (g1^3*t^7.36)/(g2^5*g3*g4) - (3*t^7.36)/(g1*g2*g3*g4) - (g2^3*t^7.36)/(g1^5*g3*g4) - (g3^3*t^7.36)/(g1*g2^5*g4) - (g3^3*t^7.36)/(g1^5*g2*g4) - (g4^3*t^7.36)/(g1*g2*g3^5) - (g4^3*t^7.36)/(g1*g2^5*g3) - (g4^3*t^7.36)/(g1^5*g2*g3) + (g1^11*g2^3*t^7.91)/(g3*g4) + (g1^7*g2^7*t^7.91)/(g3*g4) + (g1^3*g2^11*t^7.91)/(g3*g4) + (g1^11*g3^3*t^7.91)/(g2*g4) + (2*g1^7*g2^3*g3^3*t^7.91)/g4 + (2*g1^3*g2^7*g3^3*t^7.91)/g4 + (g2^11*g3^3*t^7.91)/(g1*g4) + (g1^7*g3^7*t^7.91)/(g2*g4) + (2*g1^3*g2^3*g3^7*t^7.91)/g4 + (g2^7*g3^7*t^7.91)/(g1*g4) + (g1^3*g3^11*t^7.91)/(g2*g4) + (g2^3*g3^11*t^7.91)/(g1*g4) + (g1^11*g4^3*t^7.91)/(g2*g3) + (2*g1^7*g2^3*g4^3*t^7.91)/g3 + (2*g1^3*g2^7*g4^3*t^7.91)/g3 + (g2^11*g4^3*t^7.91)/(g1*g3) + (2*g1^7*g3^3*g4^3*t^7.91)/g2 + 3*g1^3*g2^3*g3^3*g4^3*t^7.91 + (2*g2^7*g3^3*g4^3*t^7.91)/g1 + (2*g1^3*g3^7*g4^3*t^7.91)/g2 + (2*g2^3*g3^7*g4^3*t^7.91)/g1 + (g3^11*g4^3*t^7.91)/(g1*g2) + (g1^7*g4^7*t^7.91)/(g2*g3) + (2*g1^3*g2^3*g4^7*t^7.91)/g3 + (g2^7*g4^7*t^7.91)/(g1*g3) + (2*g1^3*g3^3*g4^7*t^7.91)/g2 + (2*g2^3*g3^3*g4^7*t^7.91)/g1 + (g3^7*g4^7*t^7.91)/(g1*g2) + (g1^3*g4^11*t^7.91)/(g2*g3) + (g2^3*g4^11*t^7.91)/(g1*g3) + (g3^3*g4^11*t^7.91)/(g1*g2) + t^8.73/g1^8 + t^8.73/g2^8 + t^8.73/(g1^4*g2^4) + t^8.73/g3^8 + t^8.73/(g1^4*g3^4) + t^8.73/(g2^4*g3^4) + t^8.73/g4^8 + t^8.73/(g1^4*g4^4) + t^8.73/(g2^4*g4^4) + t^8.73/(g3^4*g4^4) - t^4.36/(g1*g2*g3*g4*y) - (t^4.36*y)/(g1*g2*g3*g4)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45826 $M_1\phi_1^2$ + $ M_2q_1q_2$ 0.7121 0.8517 0.8362 [X:[], M:[1.1256, 0.8278], q:[0.5861, 0.5861], qb:[0.5395, 0.5395], phi:[0.4372]] t^2.48 + t^3.24 + 5*t^3.38 + 3*t^4.55 + 4*t^4.69 + 3*t^4.83 + t^4.97 + t^5.72 + t^5.86 - 8*t^6. - t^4.31/y - t^4.31*y detail
45824 $M_1\phi_1^2$ + $ \phi_1q_1q_2$ 0.5876 0.6839 0.8592 [X:[], M:[1.274], q:[0.8185, 0.8185], qb:[0.4555, 0.4555], phi:[0.363]] t^2.73 + 8*t^3.82 + t^4.91 + t^5.47 - 9*t^6. - t^4.09/y - t^4.09*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55669 SU2adj1nf3 $\phi_1q_1^2$ + $ M_1\phi_1^2$ + $ q_1q_2$ 0.7003 0.8367 0.837 [X:[], M:[1.0907], q:[0.7727, 1.2273, 0.5454], qb:[0.5454, 0.5454, 0.5454], phi:[0.4546]] 7*t^3.27 + 10*t^4.64 - 16*t^6. - t^4.36/y - t^4.36*y detail


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
36 SU2adj1nf2 . 0.7103 0.8462 0.8394 [X:[], M:[], q:[0.5651, 0.5651], qb:[0.5651, 0.5651], phi:[0.4349]] t^2.61 + 6*t^3.39 + 10*t^4.7 + t^5.22 - 10*t^6. - t^4.3/y - t^4.3*y detail