Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
4098 | SU2adj1nf2 | $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ + $ \phi_1^4$ + $ M_2q_2\tilde{q}_2$ + $ M_3\phi_1\tilde{q}_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_1M_5$ + $ M_6\phi_1q_2\tilde{q}_1$ + $ M_7q_1\tilde{q}_2$ + $ M_8\phi_1q_2^2$ | 0.6992 | 0.9211 | 0.7591 | [X:[], M:[1.2244, 1.1122, 0.7756, 0.8878, 0.7756, 0.7244, 0.7756, 0.6733], q:[0.75, 0.4134], qb:[0.3622, 0.4744], phi:[0.5]] | [X:[], M:[[2], [1], [-2], [-1], [-2], [2], [-2], [6]], q:[[0], [-3]], qb:[[1], [2]], phi:[[0]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_8$, $ M_6$, $ M_3$, $ M_5$, $ M_7$, $ \tilde{q}_1\tilde{q}_2$, $ M_4$, $ \phi_1^2$, $ q_1\tilde{q}_1$, $ q_1q_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_8^2$, $ \phi_1q_2\tilde{q}_2$, $ M_6M_8$, $ M_6^2$, $ M_3M_8$, $ M_5M_8$, $ M_7M_8$, $ \phi_1\tilde{q}_2^2$, $ M_3M_6$, $ M_5M_6$, $ M_6M_7$, $ M_8\tilde{q}_1\tilde{q}_2$, $ M_3^2$, $ M_3M_5$, $ M_5^2$, $ M_3M_7$, $ M_5M_7$, $ M_7^2$, $ M_4M_8$, $ M_6\tilde{q}_1\tilde{q}_2$, $ M_4M_6$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_5\tilde{q}_1\tilde{q}_2$, $ M_7\tilde{q}_1\tilde{q}_2$, $ M_3M_4$, $ M_4M_5$, $ M_4M_7$, $ M_8\phi_1^2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_6\phi_1^2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ M_4^2$, $ M_3\phi_1^2$, $ M_5\phi_1^2$, $ M_7\phi_1^2$, $ M_8q_1\tilde{q}_1$, $ M_8q_1q_2$, $ M_6q_1\tilde{q}_1$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ M_4\phi_1^2$, $ M_6q_1q_2$, $ M_3q_1\tilde{q}_1$, $ M_5q_1\tilde{q}_1$, $ M_7q_1\tilde{q}_1$, $ M_3q_1q_2$, $ M_5q_1q_2$, $ M_7q_1q_2$ | $M_4q_1\tilde{q}_1$ | -1 | t^2.02 + t^2.17 + 3*t^2.33 + t^2.51 + t^2.66 + t^3. + t^3.34 + t^3.49 + t^4.01 + t^4.04 + t^4.16 + t^4.19 + 5*t^4.35 + 3*t^4.5 + t^4.53 + 6*t^4.65 + 2*t^4.68 + 4*t^4.84 + 3*t^4.99 + 2*t^5.02 + 2*t^5.17 + 4*t^5.33 + t^5.36 + 3*t^5.51 + 4*t^5.66 + 2*t^5.82 - t^6. + t^6.03 + t^6.06 + t^6.18 + t^6.21 + 2*t^6.34 + 5*t^6.37 + 2*t^6.49 + 6*t^6.52 + t^6.55 + 12*t^6.67 + 2*t^6.7 + 6*t^6.83 + 6*t^6.86 + 10*t^6.98 + 7*t^7.01 + 2*t^7.04 + 6*t^7.16 + 3*t^7.19 + 4*t^7.32 + 8*t^7.35 + t^7.38 + 5*t^7.5 + 4*t^7.53 + 7*t^7.65 + 6*t^7.68 + 7*t^7.84 + 7*t^7.99 + t^8.05 + t^8.08 + 3*t^8.14 - 2*t^8.17 + t^8.2 + t^8.23 - 4*t^8.33 + 3*t^8.36 + 5*t^8.39 - t^8.48 + 6*t^8.54 + t^8.57 - t^8.66 + 15*t^8.69 + 2*t^8.72 + 2*t^8.82 + 11*t^8.85 + 6*t^8.88 - t^4.5/y - t^6.52/y - t^6.67/y - (2*t^6.83)/y + t^7.19/y + (3*t^7.35)/y + (3*t^7.5)/y + t^7.53/y + (3*t^7.65)/y + (2*t^7.68)/y + (4*t^7.84)/y + (3*t^7.99)/y + t^8.02/y + (4*t^8.17)/y + (4*t^8.33)/y + t^8.36/y + t^8.48/y + (3*t^8.51)/y - t^8.54/y + (5*t^8.66)/y - t^8.69/y + (3*t^8.82)/y - (2*t^8.85)/y - t^4.5*y - t^6.52*y - t^6.67*y - 2*t^6.83*y + t^7.19*y + 3*t^7.35*y + 3*t^7.5*y + t^7.53*y + 3*t^7.65*y + 2*t^7.68*y + 4*t^7.84*y + 3*t^7.99*y + t^8.02*y + 4*t^8.17*y + 4*t^8.33*y + t^8.36*y + t^8.48*y + 3*t^8.51*y - t^8.54*y + 5*t^8.66*y - t^8.69*y + 3*t^8.82*y - 2*t^8.85*y | g1^6*t^2.02 + g1^2*t^2.17 + (3*t^2.33)/g1^2 + g1^3*t^2.51 + t^2.66/g1 + t^3. + g1*t^3.34 + t^3.49/g1^3 + g1^3*t^4.01 + g1^12*t^4.04 + t^4.16/g1 + g1^8*t^4.19 + 5*g1^4*t^4.35 + 3*t^4.5 + g1^9*t^4.53 + (6*t^4.65)/g1^4 + 2*g1^5*t^4.68 + 4*g1*t^4.84 + (3*t^4.99)/g1^3 + 2*g1^6*t^5.02 + 2*g1^2*t^5.17 + (4*t^5.33)/g1^2 + g1^7*t^5.36 + 3*g1^3*t^5.51 + (4*t^5.66)/g1 + (2*t^5.82)/g1^5 - t^6. + g1^9*t^6.03 + g1^18*t^6.06 + g1^5*t^6.18 + g1^14*t^6.21 + 2*g1*t^6.34 + 5*g1^10*t^6.37 + (2*t^6.49)/g1^3 + 6*g1^6*t^6.52 + g1^15*t^6.55 + 12*g1^2*t^6.67 + 2*g1^11*t^6.7 + (6*t^6.83)/g1^2 + 6*g1^7*t^6.86 + (10*t^6.98)/g1^6 + 7*g1^3*t^7.01 + 2*g1^12*t^7.04 + (6*t^7.16)/g1 + 3*g1^8*t^7.19 + (4*t^7.32)/g1^5 + 8*g1^4*t^7.35 + g1^13*t^7.38 + 5*t^7.5 + 4*g1^9*t^7.53 + (7*t^7.65)/g1^4 + 6*g1^5*t^7.68 + 7*g1*t^7.84 + (7*t^7.99)/g1^3 + g1^15*t^8.05 + g1^24*t^8.08 + (3*t^8.14)/g1^7 - 2*g1^2*t^8.17 + g1^11*t^8.2 + g1^20*t^8.23 - (4*t^8.33)/g1^2 + 3*g1^7*t^8.36 + 5*g1^16*t^8.39 - t^8.48/g1^6 + 6*g1^12*t^8.54 + g1^21*t^8.57 - t^8.66/g1 + 15*g1^8*t^8.69 + 2*g1^17*t^8.72 + (2*t^8.82)/g1^5 + 11*g1^4*t^8.85 + 6*g1^13*t^8.88 - t^4.5/y - (g1^6*t^6.52)/y - (g1^2*t^6.67)/y - (2*t^6.83)/(g1^2*y) + (g1^8*t^7.19)/y + (3*g1^4*t^7.35)/y + (3*t^7.5)/y + (g1^9*t^7.53)/y + (3*t^7.65)/(g1^4*y) + (2*g1^5*t^7.68)/y + (4*g1*t^7.84)/y + (3*t^7.99)/(g1^3*y) + (g1^6*t^8.02)/y + (4*g1^2*t^8.17)/y + (4*t^8.33)/(g1^2*y) + (g1^7*t^8.36)/y + t^8.48/(g1^6*y) + (3*g1^3*t^8.51)/y - (g1^12*t^8.54)/y + (5*t^8.66)/(g1*y) - (g1^8*t^8.69)/y + (3*t^8.82)/(g1^5*y) - (2*g1^4*t^8.85)/y - t^4.5*y - g1^6*t^6.52*y - g1^2*t^6.67*y - (2*t^6.83*y)/g1^2 + g1^8*t^7.19*y + 3*g1^4*t^7.35*y + 3*t^7.5*y + g1^9*t^7.53*y + (3*t^7.65*y)/g1^4 + 2*g1^5*t^7.68*y + 4*g1*t^7.84*y + (3*t^7.99*y)/g1^3 + g1^6*t^8.02*y + 4*g1^2*t^8.17*y + (4*t^8.33*y)/g1^2 + g1^7*t^8.36*y + (t^8.48*y)/g1^6 + 3*g1^3*t^8.51*y - g1^12*t^8.54*y + (5*t^8.66*y)/g1 - g1^8*t^8.69*y + (3*t^8.82*y)/g1^5 - 2*g1^4*t^8.85*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
5626 | $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ + $ \phi_1^4$ + $ M_2q_2\tilde{q}_2$ + $ M_3\phi_1\tilde{q}_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_1M_5$ + $ M_6\phi_1q_2\tilde{q}_1$ + $ M_7q_1\tilde{q}_2$ + $ M_8\phi_1q_2^2$ + $ M_8q_1\tilde{q}_1$ | 0.6763 | 0.8906 | 0.7594 | [X:[], M:[1.2857, 1.1429, 0.7143, 0.8571, 0.7143, 0.7857, 0.7143, 0.8571], q:[0.75, 0.3214], qb:[0.3929, 0.5357], phi:[0.5]] | 3*t^2.14 + t^2.36 + 2*t^2.57 + t^2.79 + t^3. + t^3.21 + t^3.43 + t^4.07 + 7*t^4.29 + 3*t^4.5 + 8*t^4.71 + 5*t^4.93 + 7*t^5.14 + 5*t^5.36 + 6*t^5.57 + 3*t^5.79 - t^4.5/y - t^4.5*y | detail | {a: 29691/43904, c: 39099/43904, M1: 9/7, M2: 8/7, M3: 5/7, M4: 6/7, M5: 5/7, M6: 11/14, M7: 5/7, M8: 6/7, q1: 3/4, q2: 9/28, qb1: 11/28, qb2: 15/28, phi1: 1/2} |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
2115 | SU2adj1nf2 | $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ + $ \phi_1^4$ + $ M_2q_2\tilde{q}_2$ + $ M_3\phi_1\tilde{q}_1^2$ + $ M_1M_3$ + $ M_2M_4$ + $ M_1M_5$ + $ M_6\phi_1q_2\tilde{q}_1$ + $ M_7q_1\tilde{q}_2$ | 0.6784 | 0.88 | 0.7709 | [X:[], M:[1.2258, 1.1129, 0.7742, 0.8871, 0.7742, 0.7258, 0.7742], q:[0.75, 0.4113], qb:[0.3629, 0.4758], phi:[0.5]] | t^2.18 + 3*t^2.32 + t^2.52 + t^2.66 + t^3. + t^3.34 + t^3.48 + t^3.97 + t^4.02 + t^4.16 + 2*t^4.35 + 3*t^4.5 + 6*t^4.65 + t^4.69 + 4*t^4.84 + 3*t^4.98 + t^5.03 + 2*t^5.18 + 4*t^5.32 + 2*t^5.52 + 4*t^5.66 + 2*t^5.81 - t^6. - t^4.5/y - t^4.5*y | detail |