Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
402 SU2adj1nf2 $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ + $ M_2\phi_1^2$ + $ M_3q_2\tilde{q}_2$ + $ M_4\tilde{q}_1\tilde{q}_2$ + $ M_4^2$ + $ M_3^2$ 0.6621 0.7871 0.8412 [X:[], M:[0.9238, 1.1646, 1.0, 1.0], q:[0.7912, 0.5381], qb:[0.5381, 0.4619], phi:[0.4177]] [X:[], M:[[14], [-4], [0], [0]], q:[[-1], [-7]], qb:[[-7], [7]], phi:[[2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_3$, $ M_4$, $ M_2$, $ q_1\tilde{q}_2$, $ q_1q_2$, $ q_1\tilde{q}_1$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ M_1^2$ $M_3M_4$ -2 t^2.77 + 2*t^3. + t^3.49 + t^3.76 + 2*t^3.99 + t^4.02 + 2*t^4.25 + 3*t^4.48 + t^5.54 - 2*t^6. - 2*t^6.23 + t^6.53 + 2*t^6.76 + t^6.8 + 3*t^6.99 + 2*t^7.02 + 3*t^7.25 + 4*t^7.48 + t^7.52 + 2*t^7.75 + t^7.78 + 3*t^7.98 + 2*t^8.01 + t^8.05 + 3*t^8.24 + 2*t^8.28 + t^8.31 + 4*t^8.47 + 2*t^8.51 + 2*t^8.73 - 3*t^8.77 + 5*t^8.96 - t^4.25/y - t^7.02/y + t^7.48/y + (2*t^8.77)/y - t^4.25*y - t^7.02*y + t^7.48*y + 2*t^8.77*y g1^14*t^2.77 + 2*t^3. + t^3.49/g1^4 + g1^6*t^3.76 + (2*t^3.99)/g1^8 + g1^16*t^4.02 + 2*g1^2*t^4.25 + (3*t^4.48)/g1^12 + g1^28*t^5.54 - 2*t^6. - (2*t^6.23)/g1^14 + g1^20*t^6.53 + 2*g1^6*t^6.76 + g1^30*t^6.8 + (3*t^6.99)/g1^8 + 2*g1^16*t^7.02 + 3*g1^2*t^7.25 + (4*t^7.48)/g1^12 + g1^12*t^7.52 + (2*t^7.75)/g1^2 + g1^22*t^7.78 + (3*t^7.98)/g1^16 + 2*g1^8*t^8.01 + g1^32*t^8.05 + (3*t^8.24)/g1^6 + 2*g1^18*t^8.28 + g1^42*t^8.31 + (4*t^8.47)/g1^20 + 2*g1^4*t^8.51 + (2*t^8.73)/g1^10 - 3*g1^14*t^8.77 + (5*t^8.96)/g1^24 - (g1^2*t^4.25)/y - (g1^16*t^7.02)/y + t^7.48/(g1^12*y) + (2*g1^14*t^8.77)/y - g1^2*t^4.25*y - g1^16*t^7.02*y + (t^7.48*y)/g1^12 + 2*g1^14*t^8.77*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
652 $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ + $ M_2\phi_1^2$ + $ M_3q_2\tilde{q}_2$ + $ M_4\tilde{q}_1\tilde{q}_2$ + $ M_4^2$ + $ M_3^2$ + $ M_1^2$ 0.6582 0.7832 0.8404 [X:[], M:[1.0, 1.1429, 1.0, 1.0], q:[0.7857, 0.5], qb:[0.5, 0.5], phi:[0.4286]] 3*t^3. + t^3.43 + 3*t^3.86 + 6*t^4.29 - 3*t^6. - t^4.29/y - t^4.29*y detail {a: 129/196, c: 307/392, M1: 1, M2: 8/7, M3: 1, M4: 1, q1: 11/14, q2: 1/2, qb1: 1/2, qb2: 1/2, phi1: 3/7}


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
252 SU2adj1nf2 $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ + $ M_2\phi_1^2$ + $ M_3q_2\tilde{q}_2$ + $ M_4\tilde{q}_1\tilde{q}_2$ + $ M_4^2$ 0.6697 0.7947 0.8427 [X:[], M:[0.8882, 1.2067, 0.8882, 1.0], q:[0.8017, 0.6118], qb:[0.5, 0.5], phi:[0.3966]] 2*t^2.66 + t^3. + t^3.62 + 2*t^3.91 + 3*t^4.19 + t^4.24 + 2*t^4.53 + t^4.86 + 3*t^5.33 - 4*t^6. - t^4.19/y - t^4.19*y detail