Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
3990 | SU2adj1nf2 | ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{2}$ + ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{4}$ + ${ }M_{5}q_{1}\tilde{q}_{1}$ + ${ }M_{6}q_{1}q_{2}$ + ${ }M_{7}q_{1}\tilde{q}_{2}$ + ${ }M_{3}^{2}$ + ${ }M_{1}M_{8}$ | 0.7199 | 0.8998 | 0.8 | [M:[1.0215, 1.1429, 1.0, 0.9785, 0.7143, 0.7358, 0.6928, 0.9785], q:[0.7857, 0.4785], qb:[0.5, 0.5215], phi:[0.4286]] | [M:[[1], [0], [0], [-1], [0], [1], [-1], [-1]], q:[[0], [-1]], qb:[[0], [1]], phi:[[0]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{7}$, ${ }M_{5}$, ${ }M_{6}$, ${ }M_{4}$, ${ }M_{8}$, ${ }M_{3}$, ${ }M_{2}$, ${ }M_{7}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{5}M_{7}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{5}^{2}$, ${ }M_{6}M_{7}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{6}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{4}M_{7}$, ${ }M_{7}M_{8}$, ${ }M_{4}M_{5}$, ${ }M_{3}M_{7}$, ${ }M_{5}M_{8}$, ${ }M_{3}M_{5}$, ${ }M_{4}M_{6}$, ${ }M_{6}M_{8}$, ${ }M_{3}M_{6}$, ${ }M_{2}M_{7}$, ${ }M_{2}M_{5}$, ${ }M_{2}M_{6}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{8}$, ${ }M_{8}^{2}$ | ${}$ | -2 | t^2.078 + t^2.143 + t^2.207 + 2*t^2.935 + t^3. + t^3.429 + 2*t^4.157 + 2*t^4.221 + 4*t^4.286 + 2*t^4.35 + 2*t^4.415 + 2*t^5.014 + 3*t^5.078 + 3*t^5.143 + t^5.207 + t^5.507 + t^5.571 + t^5.636 + 2*t^5.871 - 2*t^6. - 2*t^6.065 - t^6.129 + 2*t^6.235 + 3*t^6.299 + 7*t^6.364 + 6*t^6.429 + 5*t^6.493 + 3*t^6.558 + 2*t^6.622 - t^6.793 - t^6.857 - t^6.922 + 4*t^7.092 + 5*t^7.157 + 7*t^7.221 + 5*t^7.286 + 3*t^7.35 + t^7.415 + t^7.585 + t^7.65 + 2*t^7.714 + t^7.779 + t^7.843 + 2*t^7.949 + t^8.014 - 2*t^8.078 - 6*t^8.143 - 7*t^8.207 - 4*t^8.272 + 3*t^8.313 - t^8.336 + 4*t^8.378 + 10*t^8.442 + 10*t^8.507 + 13*t^8.571 + 8*t^8.636 + 8*t^8.701 + 4*t^8.765 + 2*t^8.806 + 3*t^8.83 - 2*t^8.871 - 7*t^8.935 - t^4.286/y - t^6.364/y - t^6.429/y - t^6.493/y + t^7.286/y + (2*t^7.35)/y + (2*t^8.014)/y + (4*t^8.078)/y + (4*t^8.143)/y + (2*t^8.207)/y - t^8.442/y - t^8.571/y - t^8.701/y + t^8.871/y + (2*t^8.935)/y - t^4.286*y - t^6.364*y - t^6.429*y - t^6.493*y + t^7.286*y + 2*t^7.35*y + 2*t^8.014*y + 4*t^8.078*y + 4*t^8.143*y + 2*t^8.207*y - t^8.442*y - t^8.571*y - t^8.701*y + t^8.871*y + 2*t^8.935*y | t^2.078/g1 + t^2.143 + g1*t^2.207 + (2*t^2.935)/g1 + t^3. + t^3.429 + (2*t^4.157)/g1^2 + (2*t^4.221)/g1 + 4*t^4.286 + 2*g1*t^4.35 + 2*g1^2*t^4.415 + (2*t^5.014)/g1^2 + (3*t^5.078)/g1 + 3*t^5.143 + g1*t^5.207 + t^5.507/g1 + t^5.571 + g1*t^5.636 + (2*t^5.871)/g1^2 - 2*t^6. - 2*g1*t^6.065 - g1^2*t^6.129 + (2*t^6.235)/g1^3 + (3*t^6.299)/g1^2 + (7*t^6.364)/g1 + 6*t^6.429 + 5*g1*t^6.493 + 3*g1^2*t^6.558 + 2*g1^3*t^6.622 - t^6.793/g1 - t^6.857 - g1*t^6.922 + (4*t^7.092)/g1^3 + (5*t^7.157)/g1^2 + (7*t^7.221)/g1 + 5*t^7.286 + 3*g1*t^7.35 + g1^2*t^7.415 + t^7.585/g1^2 + t^7.65/g1 + 2*t^7.714 + g1*t^7.779 + g1^2*t^7.843 + (2*t^7.949)/g1^3 + t^8.014/g1^2 - (2*t^8.078)/g1 - 6*t^8.143 - 7*g1*t^8.207 - 4*g1^2*t^8.272 + (3*t^8.313)/g1^4 - g1^3*t^8.336 + (4*t^8.378)/g1^3 + (10*t^8.442)/g1^2 + (10*t^8.507)/g1 + 13*t^8.571 + 8*g1*t^8.636 + 8*g1^2*t^8.701 + 4*g1^3*t^8.765 + (2*t^8.806)/g1^3 + 3*g1^4*t^8.83 - (2*t^8.871)/g1^2 - (7*t^8.935)/g1 - t^4.286/y - t^6.364/(g1*y) - t^6.429/y - (g1*t^6.493)/y + t^7.286/y + (2*g1*t^7.35)/y + (2*t^8.014)/(g1^2*y) + (4*t^8.078)/(g1*y) + (4*t^8.143)/y + (2*g1*t^8.207)/y - t^8.442/(g1^2*y) - t^8.571/y - (g1^2*t^8.701)/y + t^8.871/(g1^2*y) + (2*t^8.935)/(g1*y) - t^4.286*y - (t^6.364*y)/g1 - t^6.429*y - g1*t^6.493*y + t^7.286*y + 2*g1*t^7.35*y + (2*t^8.014*y)/g1^2 + (4*t^8.078*y)/g1 + 4*t^8.143*y + 2*g1*t^8.207*y - (t^8.442*y)/g1^2 - t^8.571*y - g1^2*t^8.701*y + (t^8.871*y)/g1^2 + (2*t^8.935*y)/g1 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
1603 | SU2adj1nf2 | ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{2}$ + ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{4}$ + ${ }M_{5}q_{1}\tilde{q}_{1}$ + ${ }M_{6}q_{1}q_{2}$ + ${ }M_{7}q_{1}\tilde{q}_{2}$ + ${ }M_{3}^{2}$ | 0.7188 | 0.8974 | 0.801 | [M:[1.0, 1.1429, 1.0, 1.0, 0.7143, 0.7143, 0.7143], q:[0.7857, 0.5], qb:[0.5, 0.5], phi:[0.4286]] | 3*t^2.143 + 3*t^3. + t^3.429 + 12*t^4.286 + 9*t^5.143 + 3*t^5.571 - 3*t^6. - t^4.286/y - t^4.286*y | detail | {a: 3945/5488, c: 4925/5488, M1: 1, M2: 8/7, M3: 1, M4: 1, M5: 5/7, M6: 5/7, M7: 5/7, q1: 11/14, q2: 1/2, qb1: 1/2, qb2: 1/2, phi1: 3/7} |