Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
3971 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{4}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{2}M_{4}$ + ${ }M_{1}M_{5}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{7}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{8}q_{1}\tilde{q}_{1}$ 0.6574 0.8436 0.7793 [M:[1.2396, 1.1198, 0.7604, 0.8802, 0.7604, 0.7396, 1.1406, 0.8802], q:[0.75, 0.3906], qb:[0.3698, 0.4896], phi:[0.5]] [M:[[2], [1], [-2], [-1], [-2], [2], [-3], [-1]], q:[[0], [-3]], qb:[[1], [2]], phi:[[0]]] 1 {a: 516983/786432, c: 663415/786432, M1: 119/96, M2: 215/192, M3: 73/96, M4: 169/192, M5: 73/96, M6: 71/96, M7: 73/64, M8: 169/192, q1: 3/4, q2: 25/64, qb1: 71/192, qb2: 47/96, phi1: 1/2}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{6}$, ${ }M_{3}$, ${ }M_{5}$, ${ }M_{4}$, ${ }M_{8}$, ${ }\phi_{1}^{2}$, ${ }M_{7}$, ${ }q_{1}q_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{6}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{5}M_{6}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{5}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{6}M_{8}$, ${ }M_{3}M_{4}$, ${ }M_{4}M_{5}$, ${ }M_{3}M_{8}$, ${ }M_{5}M_{8}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{8}$, ${ }M_{8}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{6}M_{7}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{8}\phi_{1}^{2}$, ${ }M_{6}q_{1}q_{2}$, ${ }M_{3}M_{7}$, ${ }M_{5}M_{7}$, ${ }M_{3}q_{1}q_{2}$, ${ }M_{5}q_{1}q_{2}$ ${}M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$ -1 t^2.219 + 2*t^2.281 + 2*t^2.641 + t^3. + 2*t^3.422 + t^3.719 + t^3.844 + t^4.078 + t^4.141 + 2*t^4.438 + 2*t^4.5 + 3*t^4.563 + 2*t^4.859 + 4*t^4.922 + t^5.219 + 5*t^5.281 + 3*t^5.641 + 3*t^5.703 - t^6. + 4*t^6.063 + 2*t^6.125 + 2*t^6.359 + 2*t^6.422 + 2*t^6.484 + 2*t^6.656 + 4*t^6.719 + 3*t^6.781 + 7*t^6.844 + 3*t^7.078 + 3*t^7.141 + 4*t^7.203 + 2*t^7.266 + 3*t^7.5 + 9*t^7.563 + t^7.688 - t^7.797 + 2*t^7.859 + 8*t^7.922 + 5*t^7.984 + t^8.156 - 4*t^8.219 + 3*t^8.281 + 6*t^8.344 + 3*t^8.406 + t^8.516 - t^8.578 - 4*t^8.641 + 8*t^8.703 + 4*t^8.766 + 3*t^8.875 + t^8.938 - t^4.5/y - t^6.719/y - t^6.781/y + t^7.078/y - t^7.141/y + (2*t^7.5)/y + t^7.563/y + (3*t^7.859)/y + (3*t^7.922)/y + (2*t^8.219)/y + (4*t^8.281)/y + (4*t^8.641)/y + (4*t^8.703)/y - t^4.5*y - t^6.719*y - t^6.781*y + t^7.078*y - t^7.141*y + 2*t^7.5*y + t^7.563*y + 3*t^7.859*y + 3*t^7.922*y + 2*t^8.219*y + 4*t^8.281*y + 4*t^8.641*y + 4*t^8.703*y g1^2*t^2.219 + (2*t^2.281)/g1^2 + (2*t^2.641)/g1 + t^3. + (2*t^3.422)/g1^3 + g1^2*t^3.719 + t^3.844/g1^6 + g1^3*t^4.078 + t^4.141/g1 + 2*g1^4*t^4.438 + 2*t^4.5 + (3*t^4.563)/g1^4 + 2*g1*t^4.859 + (4*t^4.922)/g1^3 + g1^2*t^5.219 + (5*t^5.281)/g1^2 + (3*t^5.641)/g1 + (3*t^5.703)/g1^5 - t^6. + (4*t^6.063)/g1^4 + (2*t^6.125)/g1^8 + 2*g1*t^6.359 + (2*t^6.422)/g1^3 + (2*t^6.484)/g1^7 + 2*g1^6*t^6.656 + 4*g1^2*t^6.719 + (3*t^6.781)/g1^2 + (7*t^6.844)/g1^6 + 3*g1^3*t^7.078 + (3*t^7.141)/g1 + (4*t^7.203)/g1^5 + (2*t^7.266)/g1^9 + 3*t^7.5 + (9*t^7.563)/g1^4 + t^7.688/g1^12 - g1^5*t^7.797 + 2*g1*t^7.859 + (8*t^7.922)/g1^3 + (5*t^7.984)/g1^7 + g1^6*t^8.156 - 4*g1^2*t^8.219 + (3*t^8.281)/g1^2 + (6*t^8.344)/g1^6 + (3*t^8.406)/g1^10 + g1^7*t^8.516 - g1^3*t^8.578 - (4*t^8.641)/g1 + (8*t^8.703)/g1^5 + (4*t^8.766)/g1^9 + 3*g1^8*t^8.875 + g1^4*t^8.938 - t^4.5/y - (g1^2*t^6.719)/y - t^6.781/(g1^2*y) + (g1^3*t^7.078)/y - t^7.141/(g1*y) + (2*t^7.5)/y + t^7.563/(g1^4*y) + (3*g1*t^7.859)/y + (3*t^7.922)/(g1^3*y) + (2*g1^2*t^8.219)/y + (4*t^8.281)/(g1^2*y) + (4*t^8.641)/(g1*y) + (4*t^8.703)/(g1^5*y) - t^4.5*y - g1^2*t^6.719*y - (t^6.781*y)/g1^2 + g1^3*t^7.078*y - (t^7.141*y)/g1 + 2*t^7.5*y + (t^7.563*y)/g1^4 + 3*g1*t^7.859*y + (3*t^7.922*y)/g1^3 + 2*g1^2*t^8.219*y + (4*t^8.281*y)/g1^2 + (4*t^8.641*y)/g1 + (4*t^8.703*y)/g1^5


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
1585 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{4}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{2}M_{4}$ + ${ }M_{1}M_{5}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{7}\tilde{q}_{1}\tilde{q}_{2}$ 0.6467 0.8249 0.784 [M:[1.2339, 1.1169, 0.7661, 0.8831, 0.7661, 0.7339, 1.1492], q:[0.75, 0.3992], qb:[0.3669, 0.4839], phi:[0.5]] t^2.202 + 2*t^2.298 + t^2.649 + t^3. + t^3.351 + 2*t^3.448 + t^3.702 + t^3.895 + t^4.052 + t^4.149 + 2*t^4.403 + 2*t^4.5 + 3*t^4.597 + t^4.851 + 2*t^4.948 + t^5.202 + 3*t^5.298 + t^5.552 + 4*t^5.649 + 3*t^5.746 - t^4.5/y - t^4.5*y detail