Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
3965 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1q_2\tilde{q}_2$ + $ M_4X_1$ + $ M_5\phi_1\tilde{q}_1^2$ + $ M_6q_1\tilde{q}_2$ + $ M_2X_2$ + $ M_3M_7$ + $ M_8\phi_1^2$ 0.6353 0.7844 0.8099 [X:[1.614, 1.2982], M:[0.8421, 0.7018, 1.1579, 0.386, 0.7368, 0.7368, 0.8421, 1.2281], q:[0.4035, 0.7544], qb:[0.4386, 0.8596], phi:[0.386]] [X:[[0, 1], [0, 7]], M:[[0, 3], [0, -7], [0, -3], [0, -1], [2, -13], [-2, 4], [0, 3], [0, 2]], q:[[1, -4], [-1, 1]], qb:[[-1, 7], [1, 0]], phi:[[0, -1]]] 2 {a: 688/1083, c: 1699/2166, X1: 92/57, X2: 74/57, M1: 16/19, M2: 40/57, M3: 22/19, M4: 22/57, M5: 14/19, M6: 14/19, M7: 16/19, M8: 70/57, q1: 23/57, q2: 43/57, qb1: 25/57, qb2: 49/57, phi1: 22/57}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_5$, $ M_6$, $ M_1$, $ M_7$, $ \phi_1q_1^2$, $ q_2\tilde{q}_1$, $ M_8$, $ \phi_1q_1\tilde{q}_1$, $ X_2$, $ M_5^2$, $ M_5M_6$, $ M_6^2$, $ M_1M_5$, $ M_5M_7$, $ M_1M_6$, $ M_6M_7$, $ \phi_1q_2\tilde{q}_1$, $ X_1$, $ M_1^2$, $ M_1M_7$, $ M_7^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_5\phi_1q_1^2$, $ M_6\phi_1q_1^2$, $ M_5q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_1$, $ M_5M_8$, $ M_5\phi_1q_1\tilde{q}_1$, $ M_6M_8$, $ M_6\phi_1q_1\tilde{q}_1$ . -3 2*t^2.21 + 2*t^2.53 + 2*t^3.58 + 2*t^3.68 + t^3.89 + 3*t^4.42 + 4*t^4.74 + t^4.84 + 3*t^5.05 + 3*t^5.79 + 2*t^5.89 - 3*t^6. + 4*t^6.11 + 3*t^6.21 + 2*t^6.42 + 4*t^6.63 + 5*t^6.95 + 6*t^7.26 + t^7.37 + 5*t^7.58 + t^7.79 + 4*t^8. + 2*t^8.11 - 6*t^8.21 + 5*t^8.32 + 2*t^8.42 - 6*t^8.53 + 4*t^8.63 + 4*t^8.74 + 5*t^8.84 + 3*t^8.95 - t^4.16/y - (2*t^6.37)/y - t^6.68/y + t^7.42/y + t^7.63/y + (4*t^7.74)/y + (2*t^7.95)/y + t^8.05/y - (3*t^8.58)/y + (4*t^8.79)/y + (2*t^8.89)/y - t^4.16*y - 2*t^6.37*y - t^6.68*y + t^7.42*y + t^7.63*y + 4*t^7.74*y + 2*t^7.95*y + t^8.05*y - 3*t^8.58*y + 4*t^8.79*y + 2*t^8.89*y (g1^2*t^2.21)/g2^13 + (g2^4*t^2.21)/g1^2 + 2*g2^3*t^2.53 + (g1^2*t^3.58)/g2^9 + (g2^8*t^3.58)/g1^2 + 2*g2^2*t^3.68 + g2^7*t^3.89 + (g1^4*t^4.42)/g2^26 + t^4.42/g2^9 + (g2^8*t^4.42)/g1^4 + (2*g1^2*t^4.74)/g2^10 + (2*g2^7*t^4.74)/g1^2 + g2*t^4.84 + 3*g2^6*t^5.05 + (g1^4*t^5.79)/g2^22 + t^5.79/g2^5 + (g2^12*t^5.79)/g1^4 + (g1^2*t^5.89)/g2^11 + (g2^6*t^5.89)/g1^2 - 3*t^6. + (2*g1^2*t^6.11)/g2^6 + (2*g2^11*t^6.11)/g1^2 + 3*g2^5*t^6.21 + 2*g2^10*t^6.42 + (g1^6*t^6.63)/g2^39 + (g1^2*t^6.63)/g2^22 + t^6.63/(g1^2*g2^5) + (g2^12*t^6.63)/g1^6 + (2*g1^4*t^6.95)/g2^23 + t^6.95/g2^6 + (2*g2^11*t^6.95)/g1^4 + (g1^4*t^7.16)/g2^18 - (2*t^7.16)/g2 + (g2^16*t^7.16)/g1^4 + (3*g1^2*t^7.26)/g2^7 + (3*g2^10*t^7.26)/g1^2 + g2^4*t^7.37 + 5*g2^9*t^7.58 + g2^14*t^7.79 + (g1^6*t^8.)/g2^35 + (g1^2*t^8.)/g2^18 + t^8./(g1^2*g2) + (g2^16*t^8.)/g1^6 + (g1^4*t^8.11)/g2^24 + (g2^10*t^8.11)/g1^4 - (3*g1^2*t^8.21)/g2^13 - (3*g2^4*t^8.21)/g1^2 + (2*g1^4*t^8.32)/g2^19 + t^8.32/g2^2 + (2*g2^15*t^8.32)/g1^4 + (g1^2*t^8.42)/g2^8 + (g2^9*t^8.42)/g1^2 - 6*g2^3*t^8.53 + (2*g1^2*t^8.63)/g2^3 + (2*g2^14*t^8.63)/g1^2 + 4*g2^8*t^8.74 + (g1^8*t^8.84)/g2^52 + (g1^4*t^8.84)/g2^35 + t^8.84/g2^18 + t^8.84/(g1^4*g2) + (g2^16*t^8.84)/g1^8 + 3*g2^13*t^8.95 - t^4.16/(g2*y) - (g1^2*t^6.37)/(g2^14*y) - (g2^3*t^6.37)/(g1^2*y) - (g2^2*t^6.68)/y + t^7.42/(g2^9*y) + t^7.63/(g2^4*y) + (2*g1^2*t^7.74)/(g2^10*y) + (2*g2^7*t^7.74)/(g1^2*y) + (g1^2*t^7.95)/(g2^5*y) + (g2^12*t^7.95)/(g1^2*y) + (g2^6*t^8.05)/y - (g1^4*t^8.58)/(g2^27*y) - t^8.58/(g2^10*y) - (g2^7*t^8.58)/(g1^4*y) + (g1^4*t^8.79)/(g2^22*y) + (2*t^8.79)/(g2^5*y) + (g2^12*t^8.79)/(g1^4*y) + (g1^2*t^8.89)/(g2^11*y) + (g2^6*t^8.89)/(g1^2*y) - (t^4.16*y)/g2 - (g1^2*t^6.37*y)/g2^14 - (g2^3*t^6.37*y)/g1^2 - g2^2*t^6.68*y + (t^7.42*y)/g2^9 + (t^7.63*y)/g2^4 + (2*g1^2*t^7.74*y)/g2^10 + (2*g2^7*t^7.74*y)/g1^2 + (g1^2*t^7.95*y)/g2^5 + (g2^12*t^7.95*y)/g1^2 + g2^6*t^8.05*y - (g1^4*t^8.58*y)/g2^27 - (t^8.58*y)/g2^10 - (g2^7*t^8.58*y)/g1^4 + (g1^4*t^8.79*y)/g2^22 + (2*t^8.79*y)/g2^5 + (g2^12*t^8.79*y)/g1^4 + (g1^2*t^8.89*y)/g2^11 + (g2^6*t^8.89*y)/g1^2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3701 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1q_2\tilde{q}_2$ + $ M_4X_1$ + $ M_5\phi_1\tilde{q}_1^2$ + $ M_6q_1\tilde{q}_2$ + $ M_2X_2$ + $ M_3M_7$ 0.6534 0.8169 0.7999 [X:[1.6158, 1.3109], M:[0.8475, 0.6891, 1.1525, 0.3842, 0.7287, 0.7287, 0.8475], q:[0.404, 0.7485], qb:[0.4436, 0.8673], phi:[0.3842]] 2*t^2.19 + t^2.3 + 2*t^2.54 + 2*t^3.58 + t^3.7 + t^3.93 + 3*t^4.37 + 2*t^4.49 + t^4.61 + 4*t^4.73 + 3*t^4.85 + 3*t^5.09 + 3*t^5.76 + 2*t^5.88 - 2*t^6. - t^4.15/y - t^4.15*y detail