Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
3959 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{4}X_{1}$ + ${ }M_{5}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{2}X_{2}$ + ${ }M_{6}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ | 0.6593 | 0.8299 | 0.7944 | [X:[1.6217, 1.3516], M:[0.865, 0.6484, 1.135, 0.3783, 0.7567, 0.7026, 0.7026], q:[0.4054, 0.7296], qb:[0.4595, 0.892], phi:[0.3783]] | [X:[[4], [28]], M:[[12], [-28], [-12], [-4], [-8], [-18], [-18]], q:[[1], [-13]], qb:[[11], [17]], phi:[[-4]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{6}$, ${ }M_{7}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }\phi_{1}q_{1}^{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }X_{2}$, ${ }M_{6}^{2}$, ${ }M_{6}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{5}M_{7}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{5}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{1}M_{6}$, ${ }M_{1}M_{7}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{5}$, ${ }M_{1}\phi_{1}^{2}$, ${ }X_{1}$, ${ }M_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}M_{6}$, ${ }M_{3}M_{7}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}q_{1}^{2}$, ${ }M_{7}\phi_{1}q_{1}^{2}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }M_{7}q_{2}\tilde{q}_{1}$, ${ }M_{5}\phi_{1}q_{1}^{2}$, ${ }\phi_{1}^{3}q_{1}^{2}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$ | ${}$ | -2 | 2*t^2.108 + 2*t^2.27 + t^2.595 + t^3.405 + 2*t^3.568 + t^4.055 + 3*t^4.215 + 4*t^4.378 + 3*t^4.54 + 2*t^4.703 + 3*t^4.865 + t^5.19 + 2*t^5.513 + 5*t^5.675 + 2*t^5.838 - 2*t^6. + 2*t^6.162 + 4*t^6.323 + t^6.325 + 6*t^6.486 + 6*t^6.648 + t^6.65 + 7*t^6.81 + 6*t^6.973 + 5*t^7.135 - 2*t^7.297 + 3*t^7.621 + 8*t^7.783 + 5*t^7.945 - 2*t^8.108 + t^8.109 - t^8.27 + 5*t^8.431 + 8*t^8.593 - 3*t^8.595 + 9*t^8.756 + 12*t^8.918 + t^8.92 - t^4.135/y - (2*t^6.243)/y - (2*t^6.405)/y + t^7.215/y + (4*t^7.378)/y + t^7.54/y + (2*t^7.703)/y + (4*t^7.865)/y + (2*t^8.027)/y - (3*t^8.35)/y - (2*t^8.513)/y + (3*t^8.675)/y + (4*t^8.838)/y - t^4.135*y - 2*t^6.243*y - 2*t^6.405*y + t^7.215*y + 4*t^7.378*y + t^7.54*y + 2*t^7.703*y + 4*t^7.865*y + 2*t^8.027*y - 3*t^8.35*y - 2*t^8.513*y + 3*t^8.675*y + 4*t^8.838*y | (2*t^2.108)/g1^18 + (2*t^2.27)/g1^8 + g1^12*t^2.595 + t^3.405/g1^12 + (2*t^3.568)/g1^2 + g1^28*t^4.055 + (3*t^4.215)/g1^36 + (4*t^4.378)/g1^26 + (3*t^4.54)/g1^16 + (2*t^4.703)/g1^6 + 3*g1^4*t^4.865 + g1^24*t^5.19 + (2*t^5.513)/g1^30 + (5*t^5.675)/g1^20 + (2*t^5.838)/g1^10 - 2*t^6. + 2*g1^10*t^6.162 + (4*t^6.323)/g1^54 + g1^20*t^6.325 + (6*t^6.486)/g1^44 + (6*t^6.648)/g1^34 + g1^40*t^6.65 + (7*t^6.81)/g1^24 + (6*t^6.973)/g1^14 + (5*t^7.135)/g1^4 - 2*g1^6*t^7.297 + (3*t^7.621)/g1^48 + (8*t^7.783)/g1^38 + (5*t^7.945)/g1^28 - (2*t^8.108)/g1^18 + g1^56*t^8.109 - t^8.27/g1^8 + (5*t^8.431)/g1^72 + (8*t^8.593)/g1^62 - 3*g1^12*t^8.595 + (9*t^8.756)/g1^52 + (12*t^8.918)/g1^42 + g1^32*t^8.92 - t^4.135/(g1^4*y) - (2*t^6.243)/(g1^22*y) - (2*t^6.405)/(g1^12*y) + t^7.215/(g1^36*y) + (4*t^7.378)/(g1^26*y) + t^7.54/(g1^16*y) + (2*t^7.703)/(g1^6*y) + (4*g1^4*t^7.865)/y + (2*g1^14*t^8.027)/y - (3*t^8.35)/(g1^40*y) - (2*t^8.513)/(g1^30*y) + (3*t^8.675)/(g1^20*y) + (4*t^8.838)/(g1^10*y) - (t^4.135*y)/g1^4 - (2*t^6.243*y)/g1^22 - (2*t^6.405*y)/g1^12 + (t^7.215*y)/g1^36 + (4*t^7.378*y)/g1^26 + (t^7.54*y)/g1^16 + (2*t^7.703*y)/g1^6 + 4*g1^4*t^7.865*y + 2*g1^14*t^8.027*y - (3*t^8.35*y)/g1^40 - (2*t^8.513*y)/g1^30 + (3*t^8.675*y)/g1^20 + (4*t^8.838*y)/g1^10 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
3686 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{4}X_{1}$ + ${ }M_{5}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{2}X_{2}$ + ${ }M_{6}\phi_{1}\tilde{q}_{1}^{2}$ | 0.6389 | 0.7907 | 0.808 | [X:[1.6197, 1.3382], M:[0.8592, 0.6618, 1.1408, 0.3803, 0.7605, 0.7111], q:[0.4049, 0.7358], qb:[0.4543, 0.8839], phi:[0.3803]] | t^2.133 + 2*t^2.282 + t^2.578 + t^3.422 + 2*t^3.57 + t^3.867 + t^4.015 + t^4.267 + 2*t^4.415 + 3*t^4.563 + t^4.711 + 3*t^4.859 + t^5.155 + t^5.556 + 3*t^5.704 + 2*t^5.852 - t^6. - t^4.141/y - t^4.141*y | detail |