Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
3934 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1^2$ + $ M_4q_1\tilde{q}_1$ + $ M_2M_4$ + $ M_4M_5$ + $ M_6q_1\tilde{q}_2$ + $ M_7\phi_1\tilde{q}_1^2$ 0.6251 0.8183 0.7638 [X:[], M:[0.9537, 1.1389, 0.9537, 0.8611, 1.1389, 0.801, 0.6758], q:[0.7384, 0.3079], qb:[0.4005, 0.4605], phi:[0.5232]] [X:[], M:[[4], [-12], [4], [12], [-12], [-26], [28]], q:[[1], [-5]], qb:[[-13], [25]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_7$, $ q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ M_6$, $ M_1$, $ M_3$, $ M_2$, $ M_5$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ M_7^2$, $ M_7q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1^2$, $ M_7q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_6M_7$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_6q_2\tilde{q}_1$, $ q_2^2\tilde{q}_2^2$, $ \phi_1q_1q_2$, $ M_6q_2\tilde{q}_2$, $ M_6^2$, $ M_1M_7$, $ M_3M_7$, $ \phi_1q_1\tilde{q}_1$, $ M_3q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ M_1M_6$, $ M_3M_6$, $ M_2M_7$, $ M_5M_7$, $ M_7\phi_1q_2^2$, $ M_5q_2\tilde{q}_1$, $ \phi_1q_2^3\tilde{q}_1$, $ M_1^2$, $ M_1M_3$, $ M_3^2$, $ M_7\phi_1q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_2$, $ \phi_1q_2^3\tilde{q}_2$, $ M_2M_6$, $ M_5M_6$, $ M_6\phi_1q_2^2$, $ \phi_1q_2^2\tilde{q}_1^2$, $ M_7\phi_1q_2\tilde{q}_2$ $\phi_1q_2^2\tilde{q}_1\tilde{q}_2$ -2 t^2.03 + t^2.13 + t^2.31 + t^2.4 + 2*t^2.86 + 3*t^3.42 + t^3.69 + t^3.87 + t^4.05 + 2*t^4.15 + t^4.25 + 2*t^4.33 + 2*t^4.43 + t^4.53 + t^4.61 + t^4.71 + t^4.81 + 2*t^4.89 + 2*t^4.99 + 2*t^5.17 + 2*t^5.26 + 3*t^5.44 + 2*t^5.54 + 5*t^5.72 + 3*t^5.82 + t^5.9 - 2*t^6. + t^6.08 + t^6.1 + 2*t^6.18 + 5*t^6.28 + 2*t^6.36 + t^6.38 + 2*t^6.46 + 3*t^6.56 + 2*t^6.64 + t^6.65 + 3*t^6.74 + 5*t^6.83 + 3*t^6.92 + t^6.93 + 2*t^7.01 + 4*t^7.11 + 3*t^7.19 + t^7.21 + 3*t^7.29 + t^7.39 + 4*t^7.47 + 3*t^7.57 + 4*t^7.67 + 6*t^7.75 + 4*t^7.85 + t^7.93 + 2*t^7.95 + t^8.03 + t^8.11 + 2*t^8.13 + 3*t^8.21 + 3*t^8.22 + 2*t^8.31 + 2*t^8.39 + 3*t^8.49 + 2*t^8.5 + 5*t^8.58 + 3*t^8.67 + 4*t^8.68 + 3*t^8.76 + t^8.78 - t^8.86 + 4*t^8.94 + 4*t^8.96 - t^4.57/y - t^6.6/y - t^6.97/y + (2*t^7.15)/y + t^7.33/y + t^7.43/y + t^7.53/y + (2*t^7.71)/y + (2*t^7.89)/y + t^7.99/y + (3*t^8.17)/y + (2*t^8.26)/y + (3*t^8.44)/y + (4*t^8.54)/y - t^8.62/y + (5*t^8.72)/y + (4*t^8.82)/y + t^8.9/y - t^4.57*y - t^6.6*y - t^6.97*y + 2*t^7.15*y + t^7.33*y + t^7.43*y + t^7.53*y + 2*t^7.71*y + 2*t^7.89*y + t^7.99*y + 3*t^8.17*y + 2*t^8.26*y + 3*t^8.44*y + 4*t^8.54*y - t^8.62*y + 5*t^8.72*y + 4*t^8.82*y + t^8.9*y g1^28*t^2.03 + t^2.13/g1^18 + g1^20*t^2.31 + t^2.4/g1^26 + 2*g1^4*t^2.86 + (3*t^3.42)/g1^12 + t^3.69/g1^20 + g1^18*t^3.87 + g1^56*t^4.05 + 2*g1^10*t^4.15 + t^4.25/g1^36 + 2*g1^48*t^4.33 + 2*g1^2*t^4.43 + t^4.53/g1^44 + g1^40*t^4.61 + t^4.71/g1^6 + t^4.81/g1^52 + 2*g1^32*t^4.89 + (2*t^4.99)/g1^14 + 2*g1^24*t^5.17 + (2*t^5.26)/g1^22 + 3*g1^16*t^5.44 + (2*t^5.54)/g1^30 + 5*g1^8*t^5.72 + (3*t^5.82)/g1^38 + g1^46*t^5.9 - 2*t^6. + g1^84*t^6.08 + t^6.1/g1^46 + 2*g1^38*t^6.18 + (5*t^6.28)/g1^8 + 2*g1^76*t^6.36 + t^6.38/g1^54 + 2*g1^30*t^6.46 + (3*t^6.56)/g1^16 + 2*g1^68*t^6.64 + t^6.65/g1^62 + 3*g1^22*t^6.74 + (5*t^6.83)/g1^24 + 3*g1^60*t^6.92 + t^6.93/g1^70 + 2*g1^14*t^7.01 + (4*t^7.11)/g1^32 + 3*g1^52*t^7.19 + t^7.21/g1^78 + 3*g1^6*t^7.29 + t^7.39/g1^40 + 4*g1^44*t^7.47 + (3*t^7.57)/g1^2 + (4*t^7.67)/g1^48 + 6*g1^36*t^7.75 + (4*t^7.85)/g1^10 + g1^74*t^7.93 + (2*t^7.95)/g1^56 + g1^28*t^8.03 + g1^112*t^8.11 + (2*t^8.13)/g1^18 + 3*g1^66*t^8.21 + (3*t^8.22)/g1^64 + 2*g1^20*t^8.31 + 2*g1^104*t^8.39 + 3*g1^58*t^8.49 + (2*t^8.5)/g1^72 + 5*g1^12*t^8.58 + 3*g1^96*t^8.67 + (4*t^8.68)/g1^34 + 3*g1^50*t^8.76 + t^8.78/g1^80 - g1^4*t^8.86 + 4*g1^88*t^8.94 + (4*t^8.96)/g1^42 - t^4.57/(g1^2*y) - (g1^26*t^6.6)/y - t^6.97/(g1^28*y) + (2*g1^10*t^7.15)/y + (g1^48*t^7.33)/y + (g1^2*t^7.43)/y + t^7.53/(g1^44*y) + (2*t^7.71)/(g1^6*y) + (2*g1^32*t^7.89)/y + t^7.99/(g1^14*y) + (3*g1^24*t^8.17)/y + (2*t^8.26)/(g1^22*y) + (3*g1^16*t^8.44)/y + (4*t^8.54)/(g1^30*y) - (g1^54*t^8.62)/y + (5*g1^8*t^8.72)/y + (4*t^8.82)/(g1^38*y) + (g1^46*t^8.9)/y - (t^4.57*y)/g1^2 - g1^26*t^6.6*y - (t^6.97*y)/g1^28 + 2*g1^10*t^7.15*y + g1^48*t^7.33*y + g1^2*t^7.43*y + (t^7.53*y)/g1^44 + (2*t^7.71*y)/g1^6 + 2*g1^32*t^7.89*y + (t^7.99*y)/g1^14 + 3*g1^24*t^8.17*y + (2*t^8.26*y)/g1^22 + 3*g1^16*t^8.44*y + (4*t^8.54*y)/g1^30 - g1^54*t^8.62*y + 5*g1^8*t^8.72*y + (4*t^8.82*y)/g1^38 + g1^46*t^8.9*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3664 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1^2$ + $ M_4q_1\tilde{q}_1$ + $ M_2M_4$ + $ M_4M_5$ + $ M_6q_1\tilde{q}_2$ 0.6043 0.7774 0.7773 [X:[], M:[0.954, 1.138, 0.954, 0.862, 1.138, 0.7989], q:[0.7385, 0.3075], qb:[0.3995, 0.4626], phi:[0.523]] t^2.12 + t^2.31 + t^2.4 + 2*t^2.86 + 3*t^3.41 + t^3.69 + t^3.88 + t^3.97 + t^4.16 + t^4.24 + t^4.34 + t^4.43 + t^4.52 + t^4.62 + t^4.71 + t^4.79 + 2*t^4.98 + 2*t^5.17 + 2*t^5.26 + 2*t^5.53 + 4*t^5.72 + 3*t^5.81 - 2*t^6. - t^4.57/y - t^4.57*y detail