Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
3931 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_2\phi_1^2$ + $ M_2M_3$ + $ \phi_1q_1q_2$ + $ M_1X_1$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_1\tilde{q}_2$ + $ M_6\phi_1\tilde{q}_1^2$ + $ M_7\phi_1\tilde{q}_1\tilde{q}_2$ 0.6676 0.852 0.7836 [X:[1.6], M:[0.4, 1.2, 0.8, 0.7249, 0.7625, 0.7625, 0.8], q:[0.8563, 0.7437], qb:[0.4188, 0.3812], phi:[0.4]] [X:[[0, 0]], M:[[0, 0], [0, 0], [0, 0], [1, 1], [1, -1], [0, 2], [0, 0]], q:[[-1, 0], [1, 0]], qb:[[0, -1], [0, 1]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_4$, $ M_5$, $ M_6$, $ M_3$, $ M_7$, $ \phi_1^2$, $ q_2\tilde{q}_2$, $ q_2\tilde{q}_1$, $ \phi_1\tilde{q}_2^2$, $ M_4^2$, $ M_4M_5$, $ M_4M_6$, $ M_5^2$, $ M_3M_4$, $ M_5M_6$, $ M_4M_7$, $ M_4\phi_1^2$, $ \phi_1q_2\tilde{q}_2$, $ M_6^2$, $ M_3M_5$, $ M_5M_7$, $ M_5\phi_1^2$, $ \phi_1q_2\tilde{q}_1$, $ M_3M_6$, $ M_6M_7$, $ M_6\phi_1^2$, $ M_3^2$, $ M_3M_7$, $ M_7^2$, $ M_3\phi_1^2$, $ M_7\phi_1^2$, $ \phi_1^4$, $ X_1$, $ M_4q_2\tilde{q}_2$, $ \phi_1q_2^2$, $ M_4q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_2$, $ M_6q_2\tilde{q}_2$, $ M_4\phi_1\tilde{q}_2^2$, $ M_5q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_1$, $ M_3q_2\tilde{q}_2$, $ M_7q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_5\phi_1\tilde{q}_2^2$, $ M_6\phi_1\tilde{q}_2^2$, $ M_3q_2\tilde{q}_1$, $ M_7q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ M_3\phi_1\tilde{q}_2^2$, $ M_7\phi_1\tilde{q}_2^2$, $ \phi_1^3\tilde{q}_2^2$ . -3 t^2.17 + 2*t^2.29 + 3*t^2.4 + t^3.37 + 2*t^3.49 + t^4.35 + 2*t^4.46 + 6*t^4.57 + 6*t^4.69 + 7*t^4.8 + t^5.55 + 4*t^5.66 + 6*t^5.77 + 4*t^5.89 - 3*t^6. - 2*t^6.11 - t^6.23 + t^6.52 + 2*t^6.64 + 7*t^6.75 + 12*t^6.86 + 17*t^6.97 + 10*t^7.09 + 8*t^7.2 - 4*t^7.31 - 2*t^7.43 + t^7.72 + 4*t^7.84 + 9*t^7.95 + 14*t^8.06 + 8*t^8.17 - 2*t^8.29 - 15*t^8.4 - 10*t^8.51 - 4*t^8.63 + t^8.7 + 2*t^8.81 + 7*t^8.92 - t^4.2/y - t^6.37/y - (2*t^6.49)/y - (2*t^6.6)/y + (2*t^7.46)/y + (4*t^7.57)/y + (6*t^7.69)/y + (5*t^7.8)/y + (2*t^7.91)/y + t^8.03/y + (2*t^8.66)/y + (2*t^8.77)/y + (2*t^8.89)/y - t^4.2*y - t^6.37*y - 2*t^6.49*y - 2*t^6.6*y + 2*t^7.46*y + 4*t^7.57*y + 6*t^7.69*y + 5*t^7.8*y + 2*t^7.91*y + t^8.03*y + 2*t^8.66*y + 2*t^8.77*y + 2*t^8.89*y g1*g2*t^2.17 + (g1*t^2.29)/g2 + g2^2*t^2.29 + 3*t^2.4 + g1*g2*t^3.37 + (g1*t^3.49)/g2 + g2^2*t^3.49 + g1^2*g2^2*t^4.35 + g1^2*t^4.46 + g1*g2^3*t^4.46 + (g1^2*t^4.57)/g2^2 + 4*g1*g2*t^4.57 + g2^4*t^4.57 + (3*g1*t^4.69)/g2 + 3*g2^2*t^4.69 + 7*t^4.8 + g1^2*g2^2*t^5.55 + 2*g1^2*t^5.66 + 2*g1*g2^3*t^5.66 + (g1^2*t^5.77)/g2^2 + 4*g1*g2*t^5.77 + g2^4*t^5.77 + (2*g1*t^5.89)/g2 + 2*g2^2*t^5.89 - 3*t^6. - t^6.11/g2^2 - (g2*t^6.11)/g1 - t^6.23/(g1*g2) + g1^3*g2^3*t^6.52 + g1^3*g2*t^6.64 + g1^2*g2^4*t^6.64 + (g1^3*t^6.75)/g2 + 5*g1^2*g2^2*t^6.75 + g1*g2^5*t^6.75 + 5*g1^2*t^6.86 + (g1^3*t^6.86)/g2^3 + 5*g1*g2^3*t^6.86 + g2^6*t^6.86 + (4*g1^2*t^6.97)/g2^2 + 9*g1*g2*t^6.97 + 4*g2^4*t^6.97 + (5*g1*t^7.09)/g2 + 5*g2^2*t^7.09 + 8*t^7.2 - (2*t^7.31)/g2^2 - (2*g2*t^7.31)/g1 - (2*t^7.43)/(g1*g2) + g1^3*g2^3*t^7.72 + 2*g1^3*g2*t^7.84 + 2*g1^2*g2^4*t^7.84 + (2*g1^3*t^7.95)/g2 + 5*g1^2*g2^2*t^7.95 + 2*g1*g2^5*t^7.95 + 6*g1^2*t^8.06 + (g1^3*t^8.06)/g2^3 + 6*g1*g2^3*t^8.06 + g2^6*t^8.06 + (2*g1^2*t^8.17)/g2^2 + 4*g1*g2*t^8.17 + 2*g2^4*t^8.17 - (g1*t^8.29)/g2 - g2^2*t^8.29 - 13*t^8.4 - (g1*t^8.4)/g2^3 - (g2^3*t^8.4)/g1 - (5*t^8.51)/g2^2 - (5*g2*t^8.51)/g1 - (4*t^8.63)/(g1*g2) + g1^4*g2^4*t^8.7 + g1^4*g2^2*t^8.81 + g1^3*g2^5*t^8.81 + g1^4*t^8.92 + 5*g1^3*g2^3*t^8.92 + g1^2*g2^6*t^8.92 - t^4.2/y - (g1*g2*t^6.37)/y - (g1*t^6.49)/(g2*y) - (g2^2*t^6.49)/y - (2*t^6.6)/y + (g1^2*t^7.46)/y + (g1*g2^3*t^7.46)/y + (4*g1*g2*t^7.57)/y + (3*g1*t^7.69)/(g2*y) + (3*g2^2*t^7.69)/y + (5*t^7.8)/y + t^7.91/(g2^2*y) + (g2*t^7.91)/(g1*y) + t^8.03/(g1*g2*y) + (g1^2*t^8.66)/y + (g1*g2^3*t^8.66)/y + (2*g1*g2*t^8.77)/y + (g1*t^8.89)/(g2*y) + (g2^2*t^8.89)/y - t^4.2*y - g1*g2*t^6.37*y - (g1*t^6.49*y)/g2 - g2^2*t^6.49*y - 2*t^6.6*y + g1^2*t^7.46*y + g1*g2^3*t^7.46*y + 4*g1*g2*t^7.57*y + (3*g1*t^7.69*y)/g2 + 3*g2^2*t^7.69*y + 5*t^7.8*y + (t^7.91*y)/g2^2 + (g2*t^7.91*y)/g1 + (t^8.03*y)/(g1*g2) + g1^2*t^8.66*y + g1*g2^3*t^8.66*y + 2*g1*g2*t^8.77*y + (g1*t^8.89*y)/g2 + g2^2*t^8.89*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3970 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_2\phi_1^2$ + $ M_2M_3$ + $ \phi_1q_1q_2$ + $ M_1X_1$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_1\tilde{q}_2$ + $ M_6\phi_1\tilde{q}_1^2$ + $ M_7\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_4M_5$ 0.6043 0.757 0.7983 [X:[1.6], M:[0.4, 1.2, 0.8, 0.9784, 1.0216, 0.7567, 0.8], q:[0.6, 1.0], qb:[0.4216, 0.3784], phi:[0.4]] t^2.27 + 3*t^2.4 + t^2.94 + t^3.06 + t^3.47 + t^4.14 + t^4.26 + t^4.54 + 3*t^4.67 + 7*t^4.8 + t^5.21 + 3*t^5.34 + 2*t^5.46 + t^5.74 + 3*t^5.87 - 2*t^6. - t^4.2/y - t^4.2*y detail
3969 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_2\phi_1^2$ + $ M_2M_3$ + $ \phi_1q_1q_2$ + $ M_1X_1$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_1\tilde{q}_2$ + $ M_6\phi_1\tilde{q}_1^2$ + $ M_7\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_4^2$ 0.6114 0.7614 0.803 [X:[1.6], M:[0.4, 1.2, 0.8, 1.0, 0.9, 0.9, 0.8], q:[0.65, 0.95], qb:[0.35, 0.45], phi:[0.4]] 3*t^2.4 + 2*t^2.7 + t^3. + 2*t^3.9 + t^4.2 + 7*t^4.8 + 6*t^5.1 + 5*t^5.4 - 2*t^6. - t^4.2/y - t^4.2*y detail {a: 9783/16000, c: 12183/16000, X1: 8/5, M1: 2/5, M2: 6/5, M3: 4/5, M4: 1, M5: 9/10, M6: 9/10, M7: 4/5, q1: 13/20, q2: 19/20, qb1: 7/20, qb2: 9/20, phi1: 2/5}


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3658 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_2\phi_1^2$ + $ M_2M_3$ + $ \phi_1q_1q_2$ + $ M_1X_1$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_1\tilde{q}_2$ + $ M_6\phi_1\tilde{q}_1^2$ 0.6511 0.823 0.7911 [X:[1.6], M:[0.4, 1.2, 0.8, 0.7249, 0.7625, 0.7625], q:[0.8563, 0.7437], qb:[0.4188, 0.3812], phi:[0.4]] t^2.17 + 2*t^2.29 + 2*t^2.4 + t^3.37 + 2*t^3.49 + t^3.6 + t^4.35 + 2*t^4.46 + 5*t^4.57 + 4*t^4.69 + 4*t^4.8 + t^5.55 + 4*t^5.66 + 6*t^5.77 + 4*t^5.89 - t^6. - t^4.2/y - t^4.2*y detail