Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
3878 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ \phi_1q_1\tilde{q}_2$ + $ M_2\phi_1q_2^2$ + $ M_5M_6$ + $ M_7\phi_1q_2\tilde{q}_1$ 0.6885 0.881 0.7815 [X:[], M:[0.7282, 0.808, 0.6883, 0.8479, 1.1521, 0.8479, 0.7681], q:[0.8678, 0.404], qb:[0.4439, 0.7481], phi:[0.384]] [X:[], M:[[18], [-2], [28], [-12], [12], [-12], [8]], q:[[-17], [-1]], qb:[[-11], [13]], phi:[[4]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_3$, $ M_1$, $ M_7$, $ \phi_1^2$, $ M_2$, $ M_4$, $ M_6$, $ \phi_1q_2^2$, $ \phi_1\tilde{q}_1^2$, $ M_3^2$, $ M_1M_3$, $ M_1^2$, $ M_3M_7$, $ M_3\phi_1^2$, $ M_2M_3$, $ M_1M_7$, $ M_1\phi_1^2$, $ M_1M_2$, $ M_3M_4$, $ M_3M_6$, $ M_7^2$, $ M_7\phi_1^2$, $ \phi_1^4$, $ \phi_1q_2\tilde{q}_2$, $ M_1M_4$, $ M_1M_6$, $ M_2M_7$, $ M_2\phi_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_2^2$, $ M_4M_7$, $ M_6M_7$, $ M_4\phi_1^2$, $ M_6\phi_1^2$, $ q_1\tilde{q}_2$, $ M_2M_4$, $ M_2M_6$, $ \phi_1q_1q_2$, $ M_4^2$, $ M_4M_6$, $ M_6^2$, $ \phi_1q_1\tilde{q}_1$, $ M_3\phi_1q_2^2$, $ \phi_1\tilde{q}_2^2$, $ M_7\phi_1q_2^2$, $ \phi_1^3q_2^2$, $ M_3\phi_1\tilde{q}_1^2$ $M_1\phi_1\tilde{q}_1^2$ -1 t^2.06 + t^2.18 + 2*t^2.3 + t^2.42 + 2*t^2.54 + t^3.58 + t^3.82 + t^4.13 + t^4.25 + 3*t^4.37 + 3*t^4.49 + 6*t^4.61 + 4*t^4.73 + 6*t^4.85 + 2*t^4.97 + 3*t^5.09 + t^5.64 + t^5.88 - t^6. + 2*t^6.12 + t^6.19 + t^6.31 + 2*t^6.36 + 3*t^6.43 + 4*t^6.55 + 8*t^6.67 + 8*t^6.79 + 13*t^6.91 + 9*t^7.03 + 13*t^7.15 + 5*t^7.27 + 7*t^7.39 + t^7.51 + 4*t^7.63 + t^7.71 + t^7.95 - 3*t^8.06 - t^8.18 + t^8.26 - 6*t^8.3 + t^8.38 - 2*t^8.42 + 3*t^8.5 - 6*t^8.54 + 4*t^8.62 + 2*t^8.66 + 9*t^8.74 - t^8.78 + 10*t^8.86 + 3*t^8.9 + 17*t^8.98 - t^4.15/y - t^6.22/y - t^6.34/y - (2*t^6.46)/y - t^6.58/y - t^6.7/y + t^7.25/y + (2*t^7.37)/y + (3*t^7.49)/y + (5*t^7.61)/y + (5*t^7.73)/y + (6*t^7.85)/y + (3*t^7.97)/y + (2*t^8.09)/y - t^8.28/y - t^8.4/y - (3*t^8.52)/y - (2*t^8.64)/y - (4*t^8.76)/y - t^4.15*y - t^6.22*y - t^6.34*y - 2*t^6.46*y - t^6.58*y - t^6.7*y + t^7.25*y + 2*t^7.37*y + 3*t^7.49*y + 5*t^7.61*y + 5*t^7.73*y + 6*t^7.85*y + 3*t^7.97*y + 2*t^8.09*y - t^8.28*y - t^8.4*y - 3*t^8.52*y - 2*t^8.64*y - 4*t^8.76*y g1^28*t^2.06 + g1^18*t^2.18 + 2*g1^8*t^2.3 + t^2.42/g1^2 + (2*t^2.54)/g1^12 + g1^2*t^3.58 + t^3.82/g1^18 + g1^56*t^4.13 + g1^46*t^4.25 + 3*g1^36*t^4.37 + 3*g1^26*t^4.49 + 6*g1^16*t^4.61 + 4*g1^6*t^4.73 + (6*t^4.85)/g1^4 + (2*t^4.97)/g1^14 + (3*t^5.09)/g1^24 + g1^30*t^5.64 + g1^10*t^5.88 - t^6. + (2*t^6.12)/g1^10 + g1^84*t^6.19 + g1^74*t^6.31 + (2*t^6.36)/g1^30 + 3*g1^64*t^6.43 + 4*g1^54*t^6.55 + 8*g1^44*t^6.67 + 8*g1^34*t^6.79 + 13*g1^24*t^6.91 + 9*g1^14*t^7.03 + 13*g1^4*t^7.15 + (5*t^7.27)/g1^6 + (7*t^7.39)/g1^16 + t^7.51/g1^26 + (4*t^7.63)/g1^36 + g1^58*t^7.71 + g1^38*t^7.95 - 3*g1^28*t^8.06 - g1^18*t^8.18 + g1^112*t^8.26 - 6*g1^8*t^8.3 + g1^102*t^8.38 - (2*t^8.42)/g1^2 + 3*g1^92*t^8.5 - (6*t^8.54)/g1^12 + 4*g1^82*t^8.62 + (2*t^8.66)/g1^22 + 9*g1^72*t^8.74 - t^8.78/g1^32 + 10*g1^62*t^8.86 + (3*t^8.9)/g1^42 + 17*g1^52*t^8.98 - (g1^4*t^4.15)/y - (g1^32*t^6.22)/y - (g1^22*t^6.34)/y - (2*g1^12*t^6.46)/y - (g1^2*t^6.58)/y - t^6.7/(g1^8*y) + (g1^46*t^7.25)/y + (2*g1^36*t^7.37)/y + (3*g1^26*t^7.49)/y + (5*g1^16*t^7.61)/y + (5*g1^6*t^7.73)/y + (6*t^7.85)/(g1^4*y) + (3*t^7.97)/(g1^14*y) + (2*t^8.09)/(g1^24*y) - (g1^60*t^8.28)/y - (g1^50*t^8.4)/y - (3*g1^40*t^8.52)/y - (2*g1^30*t^8.64)/y - (4*g1^20*t^8.76)/y - g1^4*t^4.15*y - g1^32*t^6.22*y - g1^22*t^6.34*y - 2*g1^12*t^6.46*y - g1^2*t^6.58*y - (t^6.7*y)/g1^8 + g1^46*t^7.25*y + 2*g1^36*t^7.37*y + 3*g1^26*t^7.49*y + 5*g1^16*t^7.61*y + 5*g1^6*t^7.73*y + (6*t^7.85*y)/g1^4 + (3*t^7.97*y)/g1^14 + (2*t^8.09*y)/g1^24 - g1^60*t^8.28*y - g1^50*t^8.4*y - 3*g1^40*t^8.52*y - 2*g1^30*t^8.64*y - 4*g1^20*t^8.76*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3392 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_4M_5$ + $ \phi_1q_1\tilde{q}_2$ + $ M_2\phi_1q_2^2$ + $ M_5M_6$ 0.6704 0.8481 0.7904 [X:[], M:[0.7343, 0.8073, 0.6978, 0.8438, 1.1562, 0.8438], q:[0.8621, 0.4037], qb:[0.4402, 0.7525], phi:[0.3854]] t^2.09 + t^2.2 + t^2.31 + t^2.42 + 2*t^2.53 + t^3.58 + t^3.69 + t^3.8 + t^4.19 + t^4.3 + 2*t^4.41 + 2*t^4.52 + 4*t^4.62 + 3*t^4.73 + 4*t^4.84 + 2*t^4.95 + 3*t^5.06 + t^5.67 + t^5.78 + t^5.89 - t^4.16/y - t^4.16*y detail