Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
3877 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{2}^{2}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}X_{1}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ 0.6751 0.8573 0.7874 [X:[1.3475], M:[0.7052, 0.8105, 0.6525, 0.8632, 1.1368, 0.7578, 0.7052], q:[0.8896, 0.4053], qb:[0.458, 0.7315], phi:[0.3789]] [X:[[28]], M:[[-18], [2], [-28], [12], [-12], [-8], [-18]], q:[[17], [1]], qb:[[11], [-13]], phi:[[-4]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }M_{7}$, ${ }M_{6}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }M_{4}$, ${ }M_{5}$, ${ }\phi_{1}q_{2}^{2}$, ${ }X_{1}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{6}M_{7}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{6}^{2}$, ${ }M_{2}M_{7}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{4}$, ${ }M_{2}M_{6}$, ${ }M_{4}M_{7}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{4}\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{4}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{4}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{5}$, ${ }M_{5}M_{7}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}q_{2}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{6}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}^{2}$ ${}$ -1 2*t^2.115 + 2*t^2.274 + t^2.432 + t^2.59 + t^3.41 + t^3.568 + t^4.043 + 3*t^4.231 + 4*t^4.389 + 5*t^4.547 + 4*t^4.705 + 4*t^4.863 + t^5.021 + t^5.179 + 2*t^5.526 + 3*t^5.684 + t^5.842 - t^6. + t^6.158 + t^6.316 + 4*t^6.346 + t^6.474 + 6*t^6.504 + t^6.632 + 9*t^6.663 + 11*t^6.821 + 10*t^6.979 + 7*t^7.137 + 2*t^7.295 + t^7.453 + 3*t^7.641 + 5*t^7.799 + 3*t^7.957 + t^8.085 - 2*t^8.115 - 2*t^8.274 - 4*t^8.432 + 5*t^8.462 - 2*t^8.59 + 8*t^8.62 + 13*t^8.778 + 2*t^8.906 + 18*t^8.936 - t^4.137/y - (2*t^6.252)/y - (2*t^6.41)/y - t^6.568/y + t^7.231/y + (4*t^7.389)/y + (3*t^7.547)/y + (5*t^7.705)/y + (4*t^7.863)/y + (3*t^8.021)/y - (3*t^8.368)/y - (2*t^8.526)/y - t^8.684/y + t^8.842/y - t^4.137*y - 2*t^6.252*y - 2*t^6.41*y - t^6.568*y + t^7.231*y + 4*t^7.389*y + 3*t^7.547*y + 5*t^7.705*y + 4*t^7.863*y + 3*t^8.021*y - 3*t^8.368*y - 2*t^8.526*y - t^8.684*y + t^8.842*y (2*t^2.115)/g1^18 + (2*t^2.274)/g1^8 + g1^2*t^2.432 + g1^12*t^2.59 + t^3.41/g1^12 + t^3.568/g1^2 + g1^28*t^4.043 + (3*t^4.231)/g1^36 + (4*t^4.389)/g1^26 + (5*t^4.547)/g1^16 + (4*t^4.705)/g1^6 + 4*g1^4*t^4.863 + g1^14*t^5.021 + g1^24*t^5.179 + (2*t^5.526)/g1^30 + (3*t^5.684)/g1^20 + t^5.842/g1^10 - t^6. + g1^10*t^6.158 + g1^20*t^6.316 + (4*t^6.346)/g1^54 + g1^30*t^6.474 + (6*t^6.504)/g1^44 + g1^40*t^6.632 + (9*t^6.663)/g1^34 + (11*t^6.821)/g1^24 + (10*t^6.979)/g1^14 + (7*t^7.137)/g1^4 + 2*g1^6*t^7.295 + g1^16*t^7.453 + (3*t^7.641)/g1^48 + (5*t^7.799)/g1^38 + (3*t^7.957)/g1^28 + g1^56*t^8.085 - (2*t^8.115)/g1^18 - (2*t^8.274)/g1^8 - 4*g1^2*t^8.432 + (5*t^8.462)/g1^72 - 2*g1^12*t^8.59 + (8*t^8.62)/g1^62 + (13*t^8.778)/g1^52 + 2*g1^32*t^8.906 + (18*t^8.936)/g1^42 - t^4.137/(g1^4*y) - (2*t^6.252)/(g1^22*y) - (2*t^6.41)/(g1^12*y) - t^6.568/(g1^2*y) + t^7.231/(g1^36*y) + (4*t^7.389)/(g1^26*y) + (3*t^7.547)/(g1^16*y) + (5*t^7.705)/(g1^6*y) + (4*g1^4*t^7.863)/y + (3*g1^14*t^8.021)/y - (3*t^8.368)/(g1^40*y) - (2*t^8.526)/(g1^30*y) - t^8.684/(g1^20*y) + t^8.842/(g1^10*y) - (t^4.137*y)/g1^4 - (2*t^6.252*y)/g1^22 - (2*t^6.41*y)/g1^12 - (t^6.568*y)/g1^2 + (t^7.231*y)/g1^36 + (4*t^7.389*y)/g1^26 + (3*t^7.547*y)/g1^16 + (5*t^7.705*y)/g1^6 + 4*g1^4*t^7.863*y + 3*g1^14*t^8.021*y - (3*t^8.368*y)/g1^40 - (2*t^8.526*y)/g1^30 - (t^8.684*y)/g1^20 + (t^8.842*y)/g1^10


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3393 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{2}^{2}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}X_{1}$ 0.6548 0.8185 0.8 [X:[1.3333], M:[0.7143, 0.8095, 0.6667, 0.8571, 1.1429, 0.7619], q:[0.881, 0.4048], qb:[0.4524, 0.7381], phi:[0.381]] t^2.143 + 2*t^2.286 + t^2.429 + t^2.571 + t^3.429 + t^3.571 + t^3.857 + t^4. + t^4.286 + 2*t^4.429 + 4*t^4.571 + 3*t^4.714 + 4*t^4.857 + t^5. + t^5.143 + t^5.571 + 2*t^5.714 + t^5.857 - t^4.143/y - t^4.143*y detail {a: 55/84, c: 275/336, X1: 4/3, M1: 5/7, M2: 17/21, M3: 2/3, M4: 6/7, M5: 8/7, M6: 16/21, q1: 37/42, q2: 17/42, qb1: 19/42, qb2: 31/42, phi1: 8/21}